Comments
Wireless

IWiNS—An Informed Approach to Mobile Traffic Steering

Mario Di Dio
Principal Architect

Jan 5, 2021

It’s 3p.m. and you’re rushing, in between meetings, to pick up your kids from school. You start to pull out of your garage when your boss texts you to hop on a quick video call.  But something doesn’t work. Your app seems stuck, showing a spinning wheel—and you really need to get going. You’re starting to get nervous. You shake your fist at the sky and shout, “The Wi-Fi!”

That’s right: You’re far enough away from your home Wi-Fi access point that you have very little connectivity available, but you’re still close enough that your phone won’t let go of that connection. It happens all the time—like the last time you were in that coffee shop, browsing the web just fine, but then you suddenly had issues joining a video call. Or when you were walking your dog around the neighborhood while playing your favorite game, and the session kept freezing and crashing.

So, what do you do when you’re paused in your driveway, eager to get on the road? You rush through your phone settings, turn off Wi-Fi, your cellular connection kicks in and now you can finally start the video call with your boss. Your intuition saved the day—this time!

The good news is that there’s likely nothing wrong with your home Wi-Fi or your phone and that you aren’t alone in this experience. In fact, CableLabs’ primary research shows that whenever mobile customers perceive a poor quality of experience, 64 percent of them feel the need to manually troubleshoot their network connectivity—and they believe the quickest and most effective solution is to turn off Wi-Fi and rely solely on the cellular network. Unfortunately, this behavior causes operators direct and indirect losses, and it prevents users from leveraging operator Wi-Fi networks that could serve them better and potentially give them a better mobile user experience.

We live in a constantly connected world in which users often have overlapping Wi-Fi, LTE and Citizens Broadband Radio Service (CBRS) coverage. Manually troubleshooting network connectivity frustrates users who don’t want to be concerned about where their data is coming from. How can operators improve the customer experience while maintaining control over how network resources are utilized?

A 2018 PWC Consumer Intelligence Series 5G Survey shows that “roughly one-third [of broadband customers surveyed] said that reliability was a ‘must-have’ for internet access” and that “performance drops were a stronger concern than any other factor, though security, speed and cost efficiency each came up as important.”

As part of our commitment to 10G, CableLabs has been working tirelessly to develop new technologies that help improve latency, security, speed and reliability for broadband customers around the globe. With the importance of reliability to the end-consumer in mind, improvements to connection reliability both in the home and in the mobile space have become one of the top objectives of the 10G platform.

In 2018, CableLabs started researching technologies to improve reliability within the mobile user experience. We analyzed several standard and proprietary solutions, and we identified gaps representing great innovation opportunities. That was the inception of the Intelligent Wireless Network Steering (IWiNS ) project, a mobile traffic steering technology created by CableLabs. IWiNS enhances the mobile user experience by adding network and application awareness to traditional mobile traffic steering without requiring any changes to the mobile device or the network infrastructure.

Previous and current mobile steering solutions are divided into two main categories: network-centric and user-centric solutions:

  • Network-centric solutions such as LTE-WLAN aggregation (LWA), LTE-WLAN Radio Level Integration with IPsec Tunnel (LWIP), 5G Access Traffic Steering Switching and Splitting (ATSSS) are generally standardized by 3GPP and are centered around the cellular ecosystem. They treat a secondary external network asset (e.g., a Wi-Fi access point) as subordinated upon a cellular base station and core network. These solutions require support inside the mobile device and modifications to Wi-Fi access points.
  • User-centric solutions are based on downloadable over-the-top apps that aggregate throughput across all the wireless networks that a device can connect with. Although these solutions don’t require specific support from the device operating system (or modifications to the network infrastructure), they provide little or no control for the operator to manage the configuration of the traffic steering rules.

IWiNS fills the gaps for both types of solutions by building a technology that takes advantage of an over-the-top approach and gives full control of the traffic steering configuration to operators. Operators can now optimize single-user connectivity and take advantage of a crowd-sourced approach, resulting in a more reliable, efficient and adaptive traffic steering solution. It’s like evolving from paper maps (static and unilateral information) to the wonders of online navigation, where the power of crowd-sourced information is available.

With IWiNS, operators can generate per-application policies that are optimized using real-time network performance indicators derived from all users connected to the network. Users’ experience is enhanced by freeing them from manually troubleshooting network-connectivity issues, allowing operators to take advantage of a flexible toolset to dynamically manage network resources. Mobile virtual network operators (MVNOs) can cut costs by increasing Wi-Fi offload. Mobile network operators (MNOs) can reduce the capital cost of serving dense demand areas, leveraging cheaper network infrastructure assets and turning multiple networks into one.

IWiNS is deployed by using a client-server architecture in which the client is installed on the mobile device as an over-the-top mobile app and the server is hosted anywhere that’s convenient for the operator (e.g., public cloud, on-premises cloud, private data center). IWiNS doesn’t require any modification to the mobile device operating system or to the network infrastructure. The IWiNS client can also be embedded inside the operator’s customer care app, making its deployment simpler for the operators. The server is composed of containers that handle policy management, network metrics collection and performance estimation functions—all orchestrated to ensure the scalability, efficiency and security of the deployment.

IWiNS optimizes the mobile user experience in real time and also gives operators an effective tool to shape network utilization and control their costs. With IWiNS, a new way of experiencing mobile connectivity is right around the corner.

CableLabs has created and demonstrated the IWiNS 1.0 proof of concept. More information about the IWiNS project, including a white paper, demo and executive summary, is available below.

LEARN MORE ABOUT IWINS

Comments