Comments
HFC Network

Coherent Optics 101: Coming at You at 0.69c

Nov 23, 2020

Welcome back to the CableLabs 101 series! In our previous post, we discussed the basic components of a typical hybrid fiber-coax (HFC) cable network infrastructure and the role of DOCSIS® technology in data transmission over the coaxial portion of the network. Today, we’ll focus on the fiber portion of the HFC network, as well as the coherent optics technology that’s widely considered to be the hyper-capacity future of internet connectivity.

What Is Coherent Optics Technology?

Cable’s HFC networks are “fiber-rich,” which means they’re composed mostly of fiber—a bundle of very thin, hair-like strands of glass or plastic wire. Fiber is light, durable, and most importantly, capable of transmitting a lot of data over very long distances incredibly quickly. Light travels through a vacuum at 186,282 miles per second, a universal constant that scientists denote as “c.” Although light traveling through fiber optic cable moves a little slower than that (69 percent of the speed of light in a vacuum, or 0.69c), it’s still incredibly fast at over 128,000 miles per second. That’s fast enough for a single burst of light to circle the earth more than five times in a single second.

Until recently, signals in a typical HFC network were transmitted over fiber using analog technologies: an electrical radio frequency signal would be converted to an analog optical signal, transmitted over fiber optic cables, and then converted back to an electrical signal at the fiber node. With the advent of Distributed Access Architecture technologies, which will help cable operators cost-effectively add more capacity to their networks, that same fiber is being re-used to carry digital signals rather than analog ones.

The digital fiber technology being deployed today in access networks uses an “on-off keying” approach, in which a transmitter rapidly turns the laser on and off to send a signal; each pulse can signal a single bit of digital information (a 1 or a 0). Coherent optics adds further dimensions to the optical signal to carry more information simultaneously: rather than just pulsing the light on and off, it uses other properties of light (e.g., amplitude, phase and polarization) to carry multiple bits with each burst of information rather than just one bit. That can increase the data-carrying capacity of a single fiber by as much as 70 times, compared with non-coherent technology.

How Has This Technology Evolved?

Coherent optics technology is not new. It’s been used for over 10 years in long-haul fiber networks that span thousands of miles between cities and countries. More recently, as the cost of coherent optics technology has come down and speeds have gone up (from forty to now hundreds of gigabits per second) it has seen growing deployment in metropolitan or regional networks. The one remaining frontier has been the access network—such as in a cable HFC network, which has a large number of relatively short links, requiring a very low-cost solution.

It was for this reason that CableLabs embarked on an effort to define the use of coherent optics for cable access networks: to define requirements specific to access networks, thereby promoting interoperability, scale and competition. All this reduces the cost of this technology to the point at which it could be used widely to grow the capacity of cable operator fiber networks.

This vision was realized with the publication of our initial Point-to-Point (P2P) Coherent Optics specifications (released in June 2018), which defined how to send 100 Gigabits per second (Gbps) on a single wavelength, and how to send up to 48 wavelengths on a single fiber. That was followed by our version 2 specifications (released in March 2019), which defined interoperable operations at 200 Gbps per wavelength, doubling the capacity of the network. And both specifications included support for another key technology called Full Duplex Coherent Optics, which doubles the capacity of each fiber yet again while enabling the cost-effective use of a single fiber rather than the normal fiber pair.

How Does This Technology Affect Me and My Future?

When you think about current technology trends and predictions for the future, you’ll notice a common thread. Future innovations—like holograms, 360° virtual reality (VR), artificial intelligence and so on—will all require super high-capacity, low-latency networks that can transmit a ton of data very, very quickly. We’re not talking about just long-haul networks between cities and countries, but everywhere.

This is why cable companies started investing in the expansion of their fiber infrastructure and fiber optic technology decades ago. By focusing on “fiber deep” architectures—a fancy term for bringing fiber closer to subscribers’ homes—and using technologies such as coherent optics to mine even more bandwidth out of the fiber that we already have in the ground today, we can ensure that our cable networks continue meeting the requirements of current and future innovations. Thanks to those efforts, you’ll be able to one day enjoy your VR chats in “Paris,” work in a “holo-room” and much, much more.

Learn More About Coherent Optics

Comments
Wireless

WBA OpenRoaming™ to Enable Global Wi-Fi Roaming

Luther Smith
Director, Wireless Technology

Nov 12, 2020

On May 28, 2020, the Wireless Broadband Alliance (WBA) announced the launch of OpenRoaming. OpenRoaming is a cloud federation–based framework that will open Wi-Fi roaming to a broad community of Identity Providers (IDPs) and Access Network Providers (ANPs). OpenRoaming is a cyber-secured, seamless connection and automatic RADIUS router all rolled into one global multi-provider ecosystem. The fundamental makeup of OpenRoaming spans multiple technologies: Passpoint, DNS Discovery, RadSec and components of the Wireless Roaming Intermediary eXchange (WRIX).

OpenRoaming works by using Roaming Consortium Identifiers (RCOIs) to allow Passpoint-driven ANP selection. The RCOIs are identified by two major categories, Settlement Free and Settlement, followed by two sets of subcategories. The subcategories define roaming consortium types and service levels. The roaming consortium types span from general consortiums to industry-specific consortiums. Service levels include none, silver and gold, each defining the level of network Quality of Service (QoS) and the rate of reporting QoS information.

Current roaming platforms are based on the use of specific realms, 3GPP network identities or roaming consortiums for the selection of the Wi-Fi networks with static peer-to-peer interconnections over an IPSec tunnel for RADIUS traffic. OpenRoaming, which Figure 1 shows, established ANPs to support multiple consortiums coupled with dynamic RadSec interconnections, eliminating the need for static peer-to-peer interconnections. An additional benefit is the use of RadSec, a RADIUS client/server connection using TLS for security, which not only eliminates the need for an IPSec peer-to-peer tunnel but also encrypts the RADIUS traffic from RADIUS client to RADIUS server, which secures traffic deeper into the providers’ networks.

Why OpenRoaming?

OpenRoaming allows the cable industry to easily establish an inter-roaming partnership across the industry while reducing the overhead of a networking setup. With the defined cable industry-specific RCOI, ANPs can be targeted as part of the cable consortium.

OpenRoaming provides users a seamless Wi-Fi connection beyond the subscriber’s home service area, reducing the need to rely on a cellular data connection. Beyond the operators that provide Wi-Fi services, OpenRoaming is a tool that can be used by Mobile Virtual Network Operators (MVNOs) to assist with Wi-Fi connectivity, enabling cellular data to offload. This would broaden the data offload from a local network to a global network.

Learn More About WBA OpenRoaming

Comments
HFC Network

Cable Broadband: From DOCSIS 3.1® to DOCSIS 4.0®

Nov 6, 2020

In 1997, CableLabs released the very first version of Data Over Cable Service Interface Specification (DOCSIS ® technology) that enabled broadband internet service over Hybrid Fiber-Coaxial (HFC) networks.  Ever since, we’ve been making improvements, greatly enhancing network speed, capacity, latency, reliability and security with every new version. Today, cable operators use DOCSIS 3.1 technologies to make 1 Gbps cable broadband services available to 80% of U.S. homes, easily enabling 4K video, seamless multi-player online gaming, video conferencing and much more. Although there is still a significant runway for DOCSIS 3.1, CableLabs has been hard at work developing the next version – DOCSIS 4.0, which was officially released in March of 2020 and further advances the performance of HFC networks. Let’s take a look.

First, let’s talk about upstream speeds. DOCSIS 4.0 technology will quadruple the upstream capacity of HFC network to 6 Gbps—compared to the 1.5 Gbps that is available with DOCSIS 3.1. While current cable customers still download significantly more data than they upload, upstream data usage is on the rise. In the near future, advanced video collaboration tools, VR and more, will require even more upstream capacity. DOCSIS 4.0 also provides more options for operators to increase downstream speeds, with up to 10 Gbps of capacity. It has been designed to support the widespread availability of symmetric multigigabit speed tiers through full-duplex and extended-spectrum technologies that move us closer to our 10G goal.

In addition to faster speeds, DOCSIS 4.0 will also deliver stronger network security through enhanced authentication and encryption capabilities and more reliability due to the Proactive Network Maintenance (PNM) improvements. It is a great leap toward 10G, setting the stage for a series of subsequent enhancements that will all work together to help us build the future that we always dreamed of.

Cable Broadband- From DOCSIS 3.1® to DOCSIS 4.0®

Download the infographic.

SUBSCRIBE TO OUR BLOG

Comments
HFC Network

Testing Bandwidth Usage of Popular Video Conferencing Applications

Jay Zhu
Senior Engineer

Sheldon Webster
Lead Architect - R&D Wired Group

Doug Jones
Principal Architect

Nov 5, 2020

This year we have seen a shift toward working and learning from home and relying more on our broadband connection. Specifically, most of us use video conferencing for work, school and everyday communications. With that in mind, we looked at how much video conferencing a broadband connection can support.

In the U.S., the Federal Communications Commission (FCC) defines broadband to be a minimum of 25 Mbps downstream and 3 Mbps upstream. So, we started there. The investigation looked at how many simultaneous conferencing sessions can be supported on the access network using popular software including Google Meet, GoToMeeting, and Zoom. The data gathering used typical settings and looked at both upstream and downstream bandwidth usage from and to laptops connected by ethernet cable to a modem connected to a wired broadband connection. To avoid any appearance of endorsement of a particular conferencing application, we have not labeled the figures below with the specific apps under test.

Since this is CableLabs, we used DOCSIS® cable broadband technology. A Technicolor TC8305c gateway was used, which is a DOCSIS 3.0 modem supporting 8 downstream channels and 4 upstream channels. Note that this modem is several years old and not the current DOCSIS 3.1 technology. The modem was connected through the cable access network to a CommScope E6000 cable modem termination system (CMTS).

Laptops used ethernet wired connections to the modem to ensure no variables outside the control of the service provider would impact the speeds delivered, and conferences were set up and parameters varied while traffic flow rates were collected over time. Various laptops were used, running Windows, MacOS and Ubuntu – nothing special, just laptops that were around the lab and available for use.

Most broadband providers over-provision the broadband speeds delivered to customers’ homes – this is for assorted reasons including considering protocol overhead and ensuring headroom in the system to handle unexpected loads. For this testing, the 25/3 service was over-provisioned by 25%, a typical configuration for this service tier.

At a high level, we found that all three conferencing solutions could support at least five concurrent sessions on five separate laptops connected to the same cable modem with the above 25/3 broadband service and with all sessions in gallery view. The quality of all five sessions was good and consistent throughout, with no jitter, choppiness, artifacts, or other defects noticed during the sessions.

This research doesn’t take into account the potential external factors that can affect Internet performance in the home, from the placement of Wi-Fi routers, to building materials, to Wi-Fi interference, to the age and condition of the user’s connected devices, but it does provide a helpful illustration of the baseline capabilities of 25/3 broadband.

The data is presented below where samples were collected every 200 milliseconds using tshark (the Wireshark network analyzer).

Conferencing Application: A

The chart below (Figure 1) shows access network usage for the five concurrent sessions over 300 seconds (five minutes) for one of the above conferencing applications. The blue line is the total downstream usage, and the orange line is total upstream usage. Note that the upstream usage stays below 2 Mbps over the five minutes.

Figure 2 shows the upstream bandwidth usage of the five individual conference sessions where each is below 0.5 Mbps.

Figure 3 shows the downstream bandwidth usage for the five individual conference sessions.

Conferencing Application: B

Figure 4 shows access network usage for five concurrent sessions over 300 seconds (five minutes) for the next conferencing application tested. The blue line is the total downstream usage, and the orange line is total upstream usage. Note that the upstream usage hovers around 3 Mbps as each conference session attempts to use as much upstream bandwidth as possible.

Figure 5 shows the upstream bandwidth usage of the five individual conference sessions where each is below 1 Mbps, though the individual sessions sawtooth up and down as the individual conference sessions compete for more bandwidth. This is normal behavior for applications of this type, and did not have a negative impact on stream quality.

Figure 6 shows the downstream bandwidth usage for the five individual conference sessions.

Conferencing Application: C

Figure 7 shows access network usage for the five concurrent sessions over 300 seconds (five minutes) for the third of the applications tested. The blue line is the total downstream usage, and the orange line is total upstream usage. Note that the total upstream usage hovers around 3 Mbps over the five minutes.

Figure 8 shows the upstream bandwidth usage of the five individual conference sessions where each is below 1 Mbps, though the individual sessions sawtooth up and down as the individual conference sessions compete for more bandwidth. This is normal behavior for applications of this type, and did not have a negative impact on stream quality.

Figure 9 shows the downstream bandwidth usage for the five individual conference sessions. Note the scale of this diagram is different because of higher downstream bandwidth usage.

In summary, each of the video conferencing applications supported at least five concurrent sessions over the 25/3 broadband connection. The focus of this analysis is upstream bandwidth usage, and all three video conferencing technologies manage the upstream usage to fit within the provisioned 3 Mbps broadband speed. For at least two of the conferencing applications, there was also sufficient available downstream speed to run other common applications, such as video streaming and web browsing, concurrently with the five conferencing sessions.

Areas of Future Study

Conferencing services have enhanced modes that allow for higher definition video but that also uses more bandwidth. These modes place additional load on the broadband connection and may reduce the number of simultaneous conferences.

An interesting finding is that upstream bandwidth usage out of a home can depend on how other conference participants choose to view the video. Gallery mode uses lower bit rate thumbnail pictures of participants and is the most efficient for a conference. “Pinning” a speaker’s video can cause higher bandwidth out of a home. In addition, users that purchase add-on cameras that provide higher definition video than the camera included with their laptop may see higher upstream usage.

Learn More About Broadband Network Performance

Comments
Security

A Proposal for a Long-Term Post-Quantum Transitioning Strategy for the Broadband Industry via Composite Crypto and PQPs

Massimiliano Pala
Principal Security Architect

Oct 22, 2020

The broadband industry has historically relied on public-key cryptography to provide secure and strong authentication across access networks and devices. In our environment, one of the most challenging issues—when it comes to cryptography—is to support devices with different capabilities. Some of these devices may or may not be fully (or even partially) upgradeable. This can be due to software limitations (e.g., firmware or applications cannot be securely updated) or hardware limitations (e.g., crypto accelerators or secure elements).

A Heterogeneous Ecosystem

When researching our transitioning strategy, we realized that—especially for constrained devices—the only option at our disposal was the use of pre-shared keys (PSKs) to allow for post-quantum safe authentications for the various identified use cases.

In a nutshell, our proposal combines the use of composite crypto, post-quantum algorithms and timely distributed PSKs to accommodate the coexistence of our main use cases: post-quantum capable devices, post-quantum validation capable devices and classic-only devices. In addition to providing a classification of the various types of devices based on their crypto capabilities to support the transition, we also looked at the use of composite crypto for the next-generation DOCSIS® PKI to allow the delivery of multi-algorithm support for the entire ecosystem: Elliptic Curve Digital Signature Algorithm (ECDSA) as a more efficient alternative to the current RSA algorithm, and a post-quantum algorithm (PQA) for providing long-term quantum-safe authentications. We devised a long-term transitioning strategy for allowing secure authentications in our heterogeneous ecosystem, in which new and old must coexist for a long time.

Three Classes of Devices

The history of broadband networks teaches us that we should expect devices that are deployed in DOCSIS® networks to be very long-lived (i.e., 20 or more years). This translates into the added requirement—for our environment—to identify strategies that allow for the different classes of devices to still perform secure authentications under the quantum threat. To better understand what is needed to protect the different types of devices, we classified them into three distinct categories based on their long-term cryptographic capabilities.

Classic-Only Devices. This class of devices does not provide any crypto-upgrade capability, except for supporting the composite crypto construct. For this class of devices, we envision deploying post-quantum PSKs (PQPs) to devices. These keys are left dormant until the quantum-safe protection is needed for the public-key algorithm.

PKS Protection
 

Specifically, while the identity is still provided via classic signatures and associated certificate chains, the protection against quantum is provided via the pre-deployed PSKs. Various techniques have been identified to make sure these keys are randomly combined and updated while attached to the network: an attacker would be required to have access to the full history of the device traffic to be able to get access to the PSKs. This solution can be deployed today for cable modems and other fielded devices.

Quantum-Validation Capable Devices. This type of device does not provide the possibility to upgrade the secure storage or the private key algorithms, but their crypto libraries can be updated to support selected PQAs and quantum-safe key encapsulation mechanisms (KEMs). Devices with certificates issued under the original RSA infrastructure must still use the deployed PSKs to protect the full authentication chain, whereas devices whose credentials are issued under the new PKI need only protect the link between the signature and the device certificate. For these devices, PSKs can be transferred securely via quantum-resistant KEMs.

Quantum Capable Devices. These devices will have full PQA support (both for authentication and validation) and might support classic algorithms for validation. The use of composite crypto allows for validating the same entities across the quantum-threat hump, especially on the access network side. To validate classic-only devices, the use of Kerberos can address symmetric pairwise PSKs distribution for authentication and encryption.

Composite Crypto Solves a Fundamental Problem

In our proposal for a post-quantum transitioning strategy for the broadband industry, we identified the use of composite crypto and PQPs as the two necessary building blocks for enabling secure authentication for all PKI data (from digital certificates to revocation information).

When composite crypto and PQPs are deployed together, the proposed architecture allows for secure authentication across different classes of devices (i.e., post-quantum and classic), lowers the costs of transitioning to quantum-safe algorithms by requiring the support of a single infrastructure (also required for indirect authentication data like “stapled” OCSP responses), extends the lifetime of classic devices across the quantum hump and does not require protocol changes (even proprietary ones) as the two-certificate solution would require.

Ultimately, the use of composite crypto efficiently solves the fundamental problem of associating both classic and quantum-safe algorithms to a single identity.

To learn more, watch SCTE Tec-Expo 2020’s “Evolving Security Tools: Advances in Identity Management, Crytography & Secure Processing” recording and participate to the KeyFactor’s 2020 Summit.

SUBSCRIBE TO OUR BLOG

Comments
HFC Network

A “101” on DOCSIS® Technology: The Heart of Cable Broadband

Oct 14, 2020

Welcome to the first installment of our CableLabs 101 series about a suite of breakthrough technologies that are instrumental in the path toward the cable industry’s 10G vision—a new era of connectivity that will revolutionize the way we live, work, learn and play. These technologies work together to further expand the capabilities of cable’s hybrid fiber coaxial (HFC) network by increasing connection speeds and capacity, lowering latency and enhancing network reliability and security to meet cable customers’ needs for many years to come.

Let’s begin with the DOCSIS specification that started it all. Without DOCSIS technology, cable broadband would look much different.

What Is DOCSIS?

Initially released by CableLabs in 1997, DOCSIS—or Data Over Cable Service Interface Specification—is the technology that enables broadband internet service over an HFC network, now used by hundreds of millions of residential and business customers around the globe. It is essentially the set of specifications that allows different cable industry vendors to design interoperable cable modems (the piece of network equipment that sits in the home) and cable modem termination systems (CMTSs—the network equipment that sits in the cable operator’s hub site). The CMTS is a head-end traffic controller that routes data between the modem in the home and the internet.

DOCSIS technology helped usher in the era of broadband and “always on” internet connections, enabling a wave of innovation that continues to this day.  With DOCSIS technology, internet customers were no longer forced to use dial-up solutions that tied up home phone lines and probably caused a significant spike in family feuds. The DOCSIS solution changed everything. Not only did it allow for an “always-on” cable connection (no dial-up required!), it was also significantly faster than dial up.  We’ll talk about connection speed—along with capacity, latency and other network performance metrics—and how they affect you a little later in this article.

How Does It Work?

DOCSIS technology governs how data is transmitted over the HFC network. To understand how it works, we need to start with the HFC network—the physical infrastructure that most cable companies use to provide high-speed internet connectivity to their customers. As the name suggests, the HFC network is composed of two parts: the fiber optical network and the coaxial network. HFC networks are predominantly fiber, as illustrated in our recent blog post. The remaining portion of the HFC network is coaxial cable. The coaxial network is connected to the optical fiber network at a “fiber node,” where the (fiber) optical signals are converted to radio frequency electrical signals for transmission over the coaxial network to the subscriber’s home. The HFC network seamlessly transmits data from the CMTS to your cable modem (we call this “downstream” or “download” traffic) or from your modem back to the CMTS (“upstream” or “upload”). In turn, the CMTS is connected to the internet via a set of routers in the service provider’s network.

Think of the HFC network as a “highway” and the data as traffic moving in “lanes” in either direction. In the downstream direction, DOCSIS devices translate the data from the internet into signals carried on the fiber optic portion of the HFC network and then down the coaxial network to your modem. On the upstream, the data that you upload is sent back up the network on a separate upstream “lane.” Traditionally, this “highway” has had more lanes dedicated to the downstream traffic than upstream, which matches current customer traffic patterns. All of this is about to change with the 10G vision, which strives toward symmetrical upstream and downstream service speeds.

How Has This Technology Evolved?

DOCSIS technology has come a long way since 1997. Over the years, it has undergone a few iterations, through versions 1.0, 1.1, 2.0 and 3.0 to 3.1. As DOCSIS has evolved, it has gotten faster by adding more lanes in each direction and it has become more energy-efficient as well. Along the way, several additions to the base technology have been continuously added. These include enabling lower latencies, increased security of the traffic, and tools to make the network more reliable. Today’s cable networks leverage DOCSIS 3.1 technology, which has enabled the widespread availability of 1 Gbps cable broadband services, allowing us to easily enjoy services like 4K video, faster downloads, seamless online gaming and video calls.

DOCSIS 4.0, released in March 2020, is another stepping stone toward that 10G vision. It will quadruple the upstream capacity to 6 Gbps, to match changing data traffic patterns and open doors to even more gigabit services, such as innovative videoconferencing applications and more. DOCSIS 4.0 equipment is still in the process of being developed and is seeing great progress each day toward device certification. Once certification is complete, cable vendors will start mass-producing DOCSIS 4.0-compatible equipment. With the widespread deployment of DOCSIS 4.0 technology, cable operators will have the ability to offer symmetrical multigigabit broadband services over their HFC networks.

How Does This Technology Affect Me and My Future?

All this talk about connection speeds, low latency, reliability and other performance metrics matter to us technologists because it’s how we gauge progress. But it’s so much more than giga-this and giga-that. These metrics will directly impact your future in a real, tangible way.

Over the past two decades, high-speed internet connectivity went from an obscure tech geek novelty to an important part of modern life. We are now streaming in 4K, collaborating on video chat, playing online games with people around the world, driving connected cars and so on. Continuous advancements in DOCSIS technologies are helping make this reality possible by increasing download and upload speeds, lowering latency—or lag—for a more seamless experience, and improving reliability and security to protect our online information.

DOCSIS 4.0 technology will enable symmetrical multigigabit services, ushering in a new wave of innovation across industries and applications, including healthcare, education, entertainment, collaboration technologies, autonomous vehicles and many more. In the near future, we will see advanced health monitoring services, immersive learning and work applications, visually rich VR/AR, holodecks, omnipresent AI assistants and other game-changing innovations that we haven’t even thought of yet. In many ways, the reach and flexibility of cable’s HFC infrastructure is the backbone of our 10G future, and DOCSIS—in combination with other advanced network technologies—is key to helping us reach this Near Future.

LEARN MORE ABOUT DOCSIS TECHNOLOGIES

Comments
Wireless

New Release of Wi-Fi Certified Vantage™ Continues to Improve the Wi-Fi User Experience

Mark Poletti
Director, Wireless Network Technologies

Oct 12, 2020

Wi-Fi CERTIFIED Vantage™ is a certification program created within the Wi-Fi Alliance® that makes it easy to select devices that provide an enhanced Wi-Fi experience in managed Wi-Fi networks. The latest release is now available (as of September 2020).This is the culmination of over a year’s worth of collaboration within the Wi-Fi ecosystem under CableLabs’ leadership that delivers feature-rich devices to improve Wi-Fi user experience.

The primary goal of the Wi-Fi Vantage certification program is to provide a more reliable and higher-performance user experience than unmanaged best-effort Wi-Fi networks can provide. The Wi-Fi Vantage certification program designates a highly developed set of Wi-Fi technologies optimized for managed Wi-Fi networks that directly address Wi-Fi managed network operator needs.

Wi-Fi Vantage bundles pertinent Wi-Fi Alliance certifications that improve overall network performance, deliver the latest in Wi-Fi security and encryption standards, and alleviate congestion on mobile data networks. Wi-Fi Vantage delivers a more reliable and consistent connectivity experience for users when they’re establishing network access, onboarding devices, accessing services and traversing Wi-Fi networks.

Wi-Fi Vantage will continue to be available for Wi-Fi 5 generation devices, and Wi-Fi Vantage certification for Wi-Fi 6 will now include advanced features:

NEW RELEASE OF WI-FI CERTIFIED VANTAGE™ CONTINUES TO IMPROVE THE WI-FI USER EXPERIENCE
Source: Wi-Fi CERTIFIED Vantage™

Vantage Evolution

The newest generation of Wi-Fi Vantage Release 3 includes newly developed IEEE 802.11 features and state-of-the-art Wi-Fi technology that can be used in a broader base of operator-managed environments, including public, residential and enterprise. Vantage Release 3 adds Wi-Fi 6, Wi-Fi and WPA 3, and Enhanced Open certifications that deliver higher data rates, less congestion, more user capacity and superior security.

Wi-Fi Vantage will continue to evolve incorporating the latest technologies, giving users the most enhanced Wi-Fi experience available. Each new generation of Wi-Fi Vantage devices will provide improved device performance and reduced network connection times when customers access managed Wi-Fi networks.

As Wi-Fi data usage and user applications continue to grow, those factors introduce strain on the Wi-Fi network that impacts user experience and Wi-Fi network operation. Strains such as maintaining connection, reliable service delivery and spectrum interference/management are some of the common challenges Wi-Fi operators are trying to overcome.

The collective feature set of Wi-Fi Vantage was built to address these strains. For example, the Wi-Fi Vantage features of enhanced network discovery and advanced roaming have been trialed and demonstrated to improve performance in network connection by decreasing setup times by 76 percent and reducing management frame and beacon congestion an average of 70 percent compared with the performance of non-certified Wi-Fi Vantage devices. This is just one example of how Wi-Fi Vantage devices use unique features to overcome Wi-Fi network strains on managed networks.

Wi-Fi CERTIFIED Vantage™ Benefits to Network Operators

  • Streamlined product procurement decisions
  • Improved network performance and resource management
  • Consistent coverage across network
  • Ability to influence client roaming behavior
  • AP load balancing
  • Latest Wi-Fi security and encryption standards
  • Quality user experiences
  • Data offload

Wi-Fi CERTIFIED Vantage™ Benefits to Users

  • Simpler, light or no-touch access
  • Secure onboarding
  • Faster speeds
  • Consistent, reliable coverage
  • Seamless transitions from Wi-Fi to cellular

The Wi-Fi Vantage feature set definition is driven by the operator community within the Wi-Fi Alliance that consists of Wi-Fi industry experts who have a pragmatic understanding of operator needs. A dedicated task group, led by CableLabs, was created in the Wi-Fi Alliance to address and develop certifications to meet these needs. CableLabs will continue to work with the Wi-Fi ecosystem to identify common Wi-Fi operator network strains and develop collaborative solutions in the form of standards certification.

Read more about Wi-Fi Vantage, including an animation and WFA overview papers: Wi-Fi CERTIFIED Vantage Enhancing the managed Wi-Fi network experience and Wi-Fi CERTIFIED Vantage™ Technology Overview.

SUBSCRIBE TO OUR BLOG

Comments
DOCSIS

CableLabs Specifications Move From De Facto to De Jure

Curtis Knittle
Vice President, Wired Technologies Research and Development

Oct 6, 2020

The Merriam-Webster online dictionary defines de facto and de jure as follows:

de facto | di-ˈfak-(ˌ)tō – actual, exercising power as if legally constituted

de jure | (ˌ)dē-ˈju̇r-ē – by right, based on laws or actions of the state

In law and government, de facto describes practices that exist in reality, even though they are not officially recognized by laws, whereas de jure describes practices that are legally recognized, regardless of whether the practice exists in reality.

De facto is commonly used to refer to what happens in practice, in contrast with de jure, which refers to things that happen according to law.

The CableLabs® DOCSIS® series of specifications have been de facto standards for the cable industry for over 20 years. In parallel, CableLabs has contributed its specifications to de jure telecommunications industry standards bodies, specifically the International Telecommunications Union (ITU-T), the European Telecommunications Standards Institute (ETSI), and the Society of Cable Telecommunications Engineers/International Society Broadband Experts (SCTE/ISBE).

In the past, creating a de jure standard was a lengthy process involving the reformatting of the specifications into the standards body’s document template, proofreading the reformatting for any errors, submitting the reformatted content as a contribution, and taking it through the standards body’s standardization process. These steps could take many months or even years. Because CableLabs’ specifications are living documents under strict document control (and may have a certification program linked to revisions under this document control), the official de jure standards body’s copy can quickly become out of date. To keep the copy up to date, the process of reformatting, proofreading, submitting, and going through the standards process, has to be repeated with every revision. This reality has led to the unfortunate result that the official de jure standards have been consistently out-of-date.

However, with the SCTE/ISBE publication of the DOCSIS 4.0 standard, now all three of the relevant de jure telecommunications industry standards bodies simply normatively reference the CableLabs specifications, either directly as is the case with SCTE/ISBE and ITU-T, or indirectly as is the case with ETSI. This simplifies the revision process to one of updating a few normative references and approving them. The process of updating these de jure standards has therefore become a much more streamlined activity and the official de jure standards can remain in sync with the CableLabs specifications.

One might ask, “Why does this matter?” Quite simply, it is a matter of law versus fact, as the definitions of de facto and de jure make clear. Regional governments (“the law”) globally prefer to recognize standards that result from the due process of a de jure standards body rather than a potentially proprietary solution coming from a single manufacturer or industry consortia. The standards process will vet these solutions and typically come with an Intellectual Property Rights (IPR) policy by which all participants must abide. Now that all of the relevant de jure standards bodies have adopted this practice cable operators around the world can confidently purchase products compliant with the CableLabs specifications, knowing that they are also fully compliant with any of the official standards from the aforementioned standards bodies.

In effect, ITU-T, ETSI, and SCTE/ISBE have all recognized that the CableLabs DOCSIS specifications are not only the de facto global standard, but also the de jure global standard. There is no longer is any gap between the facts and the law.

READ MORE ABOUT DOCSIS 4.0 TECHNOLOGIES

Comments
HFC Network

Facts You May Not Know About the Cable Industry

Oct 1, 2020

The cable industry has been around since 1948, first delivering broadcast TV channels, then cable TV channels starting in the 1970s and finally—cable broadband internet in 1996. The introduction of fast-speed, “always-on” cable internet changed everything. It accelerated innovation across multiple industries and created whole new markets. Just take a moment to think: how many times a day do you do something that requires an internet connection and where would you be without it?

The cable broadband industry now serves over 200 million households—and counting—around the world. Even if yours is one of them, you probably don’t give too much thought to what cable internet is or how it works. Internet has become an important part of modern life enabling us to learn and work from home, watch in 4K, schedule telemedicine appointments, play online multiplayer games, remote control our home security systems and so on. In fact, cable industry is the leader in delivering next-generation broadband services, with cable gigabit services available to over 80% of U.S. homes. Plus, roughly half of global cable operators are also mobile providers, so you can take your modern conveniences on the go.

While it might seem like an overnight success, building a super-fast and reliable broadband platform for millions of everyday users required a lot of collaboration and around $290 billion dollars in infrastructure and network investments over the past 20 years in the U.S.. Earlier this year, CableLabs released the DOCSIS® 4.0 specification, the latest version of the technology that governs how a broadband internet signal is transmitted over cable. When widely adopted, DOCSIS 4.0 technology will quadruple network upload capacity to up to 6 Gbps, that will support a new wave of innovative experiences and much more. But we’re not stopping here. This is only a stepping stone toward cable’s 10G vision.

Along with speed, capacity, latency and other network performance metrics, the cable industry also improved the energy efficiency of its equipment by reducing energy consumption through voluntary commitments. All these ongoing improvements, together with cable’s expansive network footprint and unwavering commitment to meeting the needs of broadband customers, are the perfect recipe for building the super network of the future. Stay tuned!

Cable Industry Facts
You can download the infographic here.

FIND OUT WHO YOUR CABLE PROVIDER IS

Comments
10G

On the Path to 10G: CableLabs Publishes Flexible MAC Architecture Specification

Jon Schnoor
Lead Architect: Wired Technologies

Sep 30, 2020

Today we are pleased to announce the release of the Flexible MAC Architecture (FMA) library of specifications. Along with the FMA System specification, we are also releasing the FMA MAC Manager Interface (MMI) and the FMA PacketCable Aggregator Interface (PAI) specs. This is the culmination of thousands of hours of work across the cable industry, on a global scale.

The FMA project is a part of the larger Distributed Access Architecture program at CableLabs. This program includes Remote PHY (R-PHY) as well as other projects like DOCSIS 4.0, Coherent Optics and others. FMA defines the standardization of the complete disaggregation of the CCAP management, control and data planes. The specification provides standard interfaces between OSS/NMS/Orchestration and the FMA management and control planes as well as a standard interface abstraction layer to cable access equipment. All of this allows for vendor independence and equipment interoperability.

As a part of the suite of technologies that support the 10G platform, FMA is a key disaggregated access network architecture that supports DOCSIS 4.0 requirements to achieve downstream speeds up to 10 Gbps and upstream speeds up to 6 Gbps. The FMA technology is complementary to the R-PHY technology and together complete a toolset of disaggregated technologies to support an operator’s next-generation data services.

Figure 1: FMA & R-PHY Architecture

Figure 1: FMA & R-PHY Architecture

FMA specification work started in late 2017 and was described in a February, 2018 video blog post. When this project kicked off at the behest of the cable industry, CableLabs and its partner vendors worked with an operator steering committee to define the scope of the project that set the wheels in motion for the development of the specification and issued release today.

What’s Next For FMA

The issuance of the specification is the initial step in a comprehensive process in order for CableLabs vendor partners to develop products and ultimately for operators to deploy those products and provide 10G services. We will continue to develop the specifications and it is our plan to begin FMA in-depth interoperability events in 2021.

If you would like to participate in the FMA working group activities, please make your request via workinggroups@cablelabs.com.

READ THE FULL SPECIFICATION

Comments