Security

CableLabs Co-Chairs New M3AAWG AI Committee

Kyle Haefner
Principal Security Architect

Andy Dolan
Senior Security Engineer

Feb 15, 2024

Key Points

  • M3AAWG has formed the AI Committee to proactively address challenges posed by the increased use of artificial intelligence in online abuse.
  • Addressing AI-powered abuse, the committee will study abusers' tactics and develops best practices to mitigate the impact of spam, phishing, fraud and online harassment.
  • Actively tracking and advocating for responsible AI development policies, efforts are directed towards enhancing AI system security and ensuring lifecycle protection against cyber threats.

The sudden rise of highly capable artificial intelligence (AI) has brought immense opportunities for beneficial innovation and advancement. However, alongside its benefits, AI also presents unique challenges concerning online abuse and threats to security and privacy. Recognizing the urgency of addressing these issues, the Messaging, Malware, and Mobile Anti-Abuse Working Group (M3AAWG) has taken a proactive stance by forming a dedicated AI Committee. The M3AAWG AI Committee, co-chaired by CableLabs, underscores M3AAWG’s commitment to fostering a safer and more secure online environment for users worldwide.

Tackling Abuse Facilitated by AI Systems

One of the primary objectives of the M3AAWG AI Committee is to address the growing concern surrounding malicious actions facilitated by AI systems. To bolster spam and phishing attacks, fraud, and online harassment, nefarious actors are increasingly leveraging AI-powered tools to amplify and accelerate their harmful activities. By studying the tactics employed by abusers and evaluating countermeasures, the committee aims to develop best common practices to help mitigate the impact of AI-facilitated abuse on individuals and organizations alike.

Public Policy and AI Abuse

The landscape of AI policy is in varying stages of development, with governmental and intergovernmental bodies around the globe proposing and enacting their own models of regulation and oversight. These efforts include the recent Executive Order in the United States aiming for "Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence," and the European Union’s proposed AI Act establishing stricter regulations for high-risk applications. The M3AAWG AI Committee is establishing an initiative to track policy developments and advocate for public policy promoting responsible and secure AI development.

Best Common Practices for Securing the AI Lifecycle and AI Systems

As AI technologies become more pervasive across various sectors, they also become prime targets for cyberattacks and exploitation. Vulnerabilities in AI algorithms and frameworks can be exploited to manipulate outcomes, compromise data integrity, and undermine trust in AI-driven solutions. In addition to combating malicious use, the M3AAWG AI Committee is focused on enhancing the security of AI systems and the AI lifecycle from training to deployment of AI models through the development of best common practices.

Harnessing AI to Counter Abuse

Although AI has been weaponized for nefarious purposes, it also holds immense potential as a tool for combating abuse and safeguarding online ecosystems. The M3AAWG AI Committee recognizes this dichotomy and is exploring innovative ways to harness AI for good. From proactive content moderation and anomaly detection to sentiment analysis and behavioral profiling, AI technologies offer many possibilities for enhancing online safety and security. By developing AI-driven solutions for detecting and mitigating abuse in real-time, the committee aims to empower service providers, platforms, and other stakeholders in their efforts to combat online threats effectively.

Why M3AAWG: Collaboration and Engagement

M3AAWG recently celebrated 20 years of combatting online abuse and making the internet a safer place.  The last 20 years of combatting spam, malware, DDoS and many other forms of abuse has only been possible through collaboration and engagement with industry leaders, academic institutions, government agencies, and advocacy groups. The M3AAWG AI Committee will leverage and build upon these relationships within the unique trusted forum of M3AAWG to address the complex challenges posed by AI-driven abuse and innovate towards AI-enabled solutions. Through open dialogue, knowledge sharing, and collaborative initiatives, the M3AAWG AI Committee aims to foster a community-driven approach to combating online abuse and promoting responsible AI usage.

Looking Ahead: The Next 20 Years

As AI continues to evolve at a rapid pace, the importance of proactive measures to address its implications for online abuse and security cannot be overstated. With the establishment of the AI Committee at its 60th meeting in San Francisco this February 2024, M3AAWG has taken a significant step towards addressing these pressing issues head-on. By leveraging collective expertise and resources, the committee is poised to drive meaningful progress in safeguarding the digital landscape against emerging threats.

Stay tuned for updates and insights from M3AAWG as we continue our journey towards a safer digital future, and please consider joining M3AAWG and the AI Committee to do your part.

LEARN MORE

Security

A Framework for Improving Internet Routing Security

Internet Routing Security Profile

Priya Shrinivasan
Director, Technology Policy

Tao Wan
Distinguished Technologist, Security

Jan 23, 2024

Key Points

  • The Routing Security Profile approaches routing security from a holistic, risk management perspective.
  • It is applicable for use by any autonomous system operator — large or small — to enhance routing security. 
  • The profile and the underlying technical controls must continue to evolve to stay ahead of a constantly changing threat landscape.
  • Our next step is to engage with the broader internet community to drive awareness and further improve and advance this work.

Reliable and secure routing is essential for the connectivity of critical communications networks, ensuring that data packets reach their intended destinations without being intercepted, altered or dropped. Inadequate routing security can make the entire network susceptible to attacks such as Internet Protocol (IP) spoofing, route hijacking and man-in-the-middle attacks.

With the increasing complexity and ubiquity of IP network infrastructures across the globe, the security of core routing protocols — including the Border Gateway Protocol (BGP) and the Resource Public Key Infrastructure (RPKI) — is an integral facet of the cybersecurity landscape. Malicious actors and threat vectors that target the network routing layer can lead to severe disruptions, such as data leakage, network outages and unauthorized access to sensitive information.

To address the issue, CableLabs has just released a “Cybersecurity Framework Profile for Internet Routing” (Routing Security Profile, or RSP) that serves as a foundation for improving the security of the internet’s routing system. The RSP is an actionable and adaptable guide, aligned with the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF), that enables Internet Service Providers (ISPs), enterprise networks, cloud service providers and organizations — large and small — to proactively identify risks and mitigate threats to enhance routing infrastructure security.

The RSP was developed as an extension of CableLabs’ and the cable industry’s longstanding leadership and commitment to building and maintaining a more secure internet ecosystem. It also was developed in response to NIST’s call to action to submit examples of “profiles” mapped to the CSF that are aimed at addressing cybersecurity risks associated with a particular business activity or operation.

What Is the Routing Security Profile, and Who Can Use It?

Network engineers, IT managers, cybersecurity professionals and decision-makers involved in network security risk management are prime candidates for using the RSP — with its exclusive focus on routing protocols and services — as one tool in an overall network strategy to enhance existing security policies and risk management procedures within their organizations.

The RSP describes various technologies and techniques used for internet routing security, including BGP, Internet Routing Registries (IRRs), Autonomous System (AS) path filtering and RPKI. In addition, it outlines several key recommendations for improving BGP security that include Route Origin Authorizations (ROAs), Route Origin Validation (ROV), BGP peer authentication, prefix filtering and monitoring for anomalies.

What Can the Routing Security Profile Do?

By mapping routing security best practices and standards to the applicable key categories and subcategories of the NIST CSF 1.1’s Core Functions — Identify, Protect, Detect, Respond and Recover — the RSP can help organizations with the following tasks:

  • Identifying systems, assets, data and risks that pertain to IP networks.
  • Protecting IP networks by performing self-assessments and adhering to cybersecurity principles.
  • Detecting cybersecurity-related disturbances or corruption of IP network services and data.
  • Responding to IP network service or data anomalies in a timely, effective and resilient manner.
  • Recovering the IP network to proper working order after a cybersecurity incident.

The RSP is a framework for improving security and managing risks for internet routing, which is one key piece of a larger critical infrastructure cybersecurity puzzle. As with any endeavor in security, the RSP will evolve over time to reflect changes to the NIST CSF, including the CSF 2.0 update coming in early 2024, advances in routing security technologies and the rapidly emerging security threat landscape.

The RSP was developed by CableLabs’ Cable Routing Engineering for Security and Trust Working Group (CREST WG). The CREST WG is composed of routing security technologists from CableLabs, NCTA — The Internet & Television Association, as well as network operators from around the world, including representatives from Armstrong, Charter, Comcast, Cox, Eastlink, Liberty Global, Midco, Rogers/Shaw and Videotron. For more information on the CREST WG, please contact us.

We welcome feedback on the RSP from other internet ecosystem stakeholders as we continue to advance this work. Please send comments to Tao Wan. We will also engage with the broader internet community through forums such as M 3AAWG to drive awareness and to further improve the profile for the benefit of all AS operators, including ISPs, cloud service providers, government agencies, universities and other organizations.

DOWNLOAD THE PROFILE

Security

Cybersecurity Awareness Month and Beyond: How We’re Safeguarding Network Integrity  

Cybersecurity Awareness Month

Massimiliano Pala
PKI Architectures, Director

Yuan Tian
Security Engineer

Darshak Thakore
Principal Architect

Kyle Haefner
Principal Security Architect

Oct 10, 2023

In the digital age, cybersecurity is the first line of defense against an ever-expanding and continually evolving array of threats. The increasing sophistication of cyber threats and a deepening dependence on interconnectivity have elevated cybersecurity technologies from a peripheral consideration to a critical priority.

October is Cybersecurity Awareness Month, but safeguarding digital integrity is a year-round commitment for CableLabs. In our Security Lab, we work to identify and mitigate threats to the access network. We proactively develop innovative technologies that make it easier for internet users to protect their digital lives.

Let’s take a look at some of the CableLabs technologies that are enhancing network security and reshaping the way we protect ourselves online.

DOCSIS 4.0 Security

The new DOCSIS® 4.0 protocol is another promising chapter in the successful life of hybrid fiber coax (HFC) networks, and it brings with it notable security enhancements to the broadband community.

It’s important to note that DOCSIS 4.0 cable modems (CMs) are compatible with existing DOCSIS 3.1 networks. This allows the CMs to take advantage of higher speed tiers even without needing to upgrade the network at the same time. To fully leverage the new upstream bandwidth efficiency and security features of the protocol, both modems and cable modem termination systems (CMTSs) need to support DOCSIS 4.0 technology.

Another key security-enhancing element of the technology is that DOCSIS 4.0 networks come with upgradable security. The technology continues to support the Baseline Privacy protocol (BPI+ V1) used in DOCSIS 3.1 specifications. It also integrates the new version that can be enabled as needed (BPI+ V2).

The new version introduces mutual authentication between devices and the network, eliminates the dependency on the Rivest Shamir Adleman (RSA) algorithm and implements modern key exchange mechanisms. This change enhances device authentications with Perfect Forward Secrecy and cryptographic agility and aligns DOCSIS key exchange mechanisms with the latest Transport Layer Security (TLS) protocol, v1.3.

Further upgrades include enhanced revocation-checking capabilities with support for both Online Certificate Status Protocol (OCSP) and Certificate Revocation List (CRL) in DOCSIS 4.0 certificates. DOCSIS 4.0 also introduces standardized interfaces for managing edge device access (SSH) aimed at limiting the exposure of corporate secrets (e.g., technicians’ passwords) and incorporates a Trust on First Use (TOFU) approach for downgrade protection across BPI+ versions.

Ultimately, the new DOCSIS 4.0 security is designed to provide several options for network risk management. These features include new speeds and capabilities that can be utilized alongside today’s security properties and procedures (e.g., BPI+V1 with DOCSIS 3.1 or DOCSIS 4.0 CMTSs) and advanced protections when needed.

Matter Device Onboarding

Passwords are meant to be secret, so why are users sharing them with all of their Internet of Things (IoT) devices? At CableLabs, we’re working to make it easy for end-users to add devices to their home networks without needing to share a password with every device.

Because so many devices are communicating with one another, standardization is critical — especially when it comes to security. That’s where Matter comes in. The open-source connectivity standard is designed to enable seamless and secure connectivity among the devices in users’ smart home platforms.

Our vision is for each device to have its own credential to get on the Wi-Fi network. The access point (AP) would use this unique credential to grant the device access to the network, and the device then would verify the AP’s credential. This has three incredibly significant advantages for subscribers:

1. It vastly increases the security of the home network. This is because a compromised device cannot divulge a global network password and lead to a compromise of the entire network.

2. It’s possible to leverage the device attestation certificate that comes with every Matter device to inform the network that it’s a verified and certified device.

3. There's no need to reset every single device on the network if the Wi-Fi password is changed.

Join us for a demonstration of Matter at SCTE® Cable-Tec Expo®, which is October 17–19 in Denver, Colorado. Come see us in CableLabs’ booth 2201 to see the future of networked IoT devices and how scanning a QR code can get a device on a network with its own unique credential.

CableLabs Custom Connectivity for MDUs

One of the fastest-growing market segments for broadband providers worldwide is the multi-dwelling unit (MDU) segment. The opportunities here include fast-growing apartment communities, as well as segments such as emergency/temporary housing, low-cost housing, the hospitality and short-term rental markets, and even emergency services.

A common theme across these is the need for an alternate deployment model that allows on-demand service activation and life-cycle management, as well as custom connectivity to various devices. The traditional deployment model of installing customer premises equipment (CPE) on a per-subscriber and/or per-unit basis has hindered operators in delivering services to these segments in a cost-effective manner.

The CableLabs Custom Connectivity architecture is designed to address these constraints by providing dynamic, on-demand subscription activation and device-level management to consumers across the operator’s footprint — without the need to deploy a CPE. The architecture leverages the security controls and mechanisms designed within the CableLabs Micronets technology to provide dynamic, micro-segmentation-based subscription delivery where a subscriber’s devices can connect to their “home subscription” from anywhere on the network and across different access technologies (Wi-Fi, cellular, etc.).

Additionally, it provides consistent operational interfaces for device authentication and service provisioning, as well as billing and subscription management interfaces to enable on-the-fly subscription activation and management.

Safer Networks, Empowered Users

The importance of proactive cybersecurity measures can’t be overstated, and these cutting-edge technologies are proof of CableLabs’ ongoing commitment to enhancing network security. These innovations not only make our networks safer, but they also empower users to take charge of their own online security.

By staying at the forefront of cybersecurity advancements, CableLabs continues to ensure we can all navigate the digital world with greater confidence and peace of mind.

EXPLORE OUR SECURITY LAB

Security

Available Now: Ransomware Active Attack Response Best Common Practices Document

Ransomware Active Attack Response Best Common Practices Announcement

Brian Scriber
Distinguished Technologist and VP of Security & Privacy Technologies

May 23, 2023

Ransomware continues to wreak havoc on global industry, governments, individuals and enterprises. Research shows that more than a third of all businesses were victims of ransomware in 2021, and now over a quarter of all malware has been reprovisioned for ransom. Ransomware is the result of malicious attackers compromising a system or network and exfiltrating or encrypting encountered data; victims are then solicited for return of control or access to their data. In many attacks, separate ransoms are demanded for return of the data and for promises not to release that data publicly.

Existing literature and guidelines on how to best prevent ransomware are common and provide useful tools for most businesses. However, CableLabs has found a distinct lack of support for small and midsized businesses (SMBs). What should SMBs under attack do immediately, what decisions should they make and who should be part of the solution? Answers to these questions were not readily available for those that needed them most.

Responding to the SMB Need

CableLabs’ Security and Privacy Technologies team, through their involvement with the Messaging Malware Mobile Anti-Abuse Working Group (M3AAWG), explored the creation of a Best Common Practices document to help them navigate the intricacies of a ransomware attack. The creation and refinement of this document reflects our commitment to delivering a threat-resistant networking environment for both wired and wireless networks. We would like to thank each of the individuals and the corporations who contributed to this work under the M3AAWG umbrella.

The freely available Ransomware Active Attack Response Best Common Practices document walks the reader through the ransomware recovery process, but it doesn’t provide a single path through the experience. This document should be used to highlight what is important so that businesses can quickly and effectively move forward while identifying the considerations, expert advice and implications of each decision and action. The goal is to inform the technical team about the critical steps to take and to communicate the results so that the executive team can make the best decisions possible in terms of recovery—as well as how best to involve all the other functions in the organization from legal and operations to marketing and financial executives. This document also provides tools for the reader while engaging with those outside the organization, including cybersecurity insurance companies, incident response teams, negotiators, forensic experts, law enforcement, regulators and media.

How It Works

The document’s first three main sections—Detection, Analysis and Response—identify the responsible, accountable, consulted and informed parties, along with the expected deliverables at each stage. The fourth section fleshes out additional details related to the key decisions the team will be making, understanding the timing, implications and involved concerns. The fifth and sixth sections explore the people (both internal and external to the organization) and the technologies at play in the recovery activities. The document closes with post-incident clean-up, recovery and reflection on what led up to the attack, as well as mitigations for the future. The conclusion also includes a review of how each stage progressed—what went well, what didn’t, where was luck involved, what was missed and more.

The target audience for this document is anyone on the IT team within an SMB but primarily the individuals responsible for the technology business operations. This may be a Chief Information Security Officer (CISO) or Chief Information Officer (CIO), or it may be the sales lead who helped build out the network. Not every company has the financial resources or the time to plan for prevention like some larger companies might have, so the objective of this paper was to provide tools in an area that was dramatically devoid of reliable advice. This is a document that the authors hope nobody ever has the necessity to read.

LEARN MORE

Security

Securing IoT Networks: NCCoE and CableLabs Collaborate to Develop Trusted Onboarding Solution

Securing IoT Networks: NCCoE and CableLabs Collaborate to Develop Trusted Onboarding Solution

Kyle Haefner
Principal Security Architect

May 9, 2023

Billions of Internet of Things (IoT) devices have been added to the internet over the past several years. During that time, millions of insecure IoT devices have contributed to massive Distributed Denial of Services (DDoS) attacks, exposing end users’ private data. To address the problem of insecure IoT devices, CableLabs participates in and contributes to several industry standards development organizations with the goal of building security into the very foundation of new devices and IoT protocols. This work culminates in the release of Matter 1.0, a secure interoperable IoT specification that major industry players are rapidly adopting.

Secure IoT Onboarding

The next critical challenge in enhancing IoT security is to extend interoperability between devices and the networks that connect them. Smart-home networks must be able to facilitate the addition of new devices, validate devices that are connected, help ensure that those devices are fully patched and updated, and safely isolate them if they’re vulnerable.

The next generation of smart-home networking begins with connecting the devices securely the first time. It’s no longer sufficient or secure to ask that consumers share their Wi-Fi password with every device on their smart home network. The network must be smart enough to give each device its own credentials to connect to the network. Crucially, the process for adding (also called onboarding) a device to the smart home network must be simple, seamless and secure.

Industry and Government Collaboration

To address this challenge, CableLabs has joined the National Cybersecurity Center of Excellence (NCCoE) Trusted Device Network-Layer and Lifecycle Management. CableLabs and 10 other companies have been collaborating to develop a reliable network-layer onboarding solution for all IoT devices. This solution leverages established non-proprietary standards and protocols, offering secure onboarding while providing device identification, authentication and authorization. This project covers the following objectives:

  • Provide the device with unique network credentials that can be updated securely and automatically, allowing the network to authenticate the device and eliminating the need for a shared password across all IoT devices.
  • Employ a secure network-layer protocol to facilitate the secure and automatic provisioning of devices with both network and application-layer credentials for connecting with other devices and the cloud.
  • Demonstrate successful interoperability between devices built and configured by participating industry collaborators.

Streamlining the User Experience

CableLabs’ contributions to the Trusted Device Network-Layer and Lifecycle Management project harness the simplicity of Wi-Fi Easy Connect from the Wi-Fi Alliance, the secure interoperability of IoTivity from Open Connectivity Foundation and the powerful technology behind CableLabs’ Micronets to create a secure and streamlined process that allows users to onboard, provision and secure devices on their smart-home networks in a single intuitive step.

CableLabs’ involvement in the Trusted Device Network-Layer and Lifecycle Management project underscores its commitment to advancing IoT security and developing best practices for secure and effortless device onboarding. By collaborating with other industry leaders, CableLabs aims to promote the adoption of secure IoT technologies and ensure that consumers have access to reliable and user-friendly solutions for managing their connected devices.

A draft of this work can be found at NIST Special Publication (SP) 1800.

LEARN MORE

Security

Improving the Resilience of Cable Networks Through RPKI

Improving the Resilience of Cable Networks Through RPKI

Tao Wan
Distinguished Technologist, Security

Jan 24, 2022

Today, CableLabs is releasing a set of best common practices to help accelerate the deployment of Resource Public Key Infrastructure (RPKI), which can mitigate the risk of IP prefix hijacking.

All broadband networks serving residential and business users consist of both access networks and IP networks. The access network connects residential homes and business premises to the broadband provider’s IP network. IP networks are then interconnected, using the Border Gateway Protocol (BGP), to form the internet.

A common disruption to BGP and the exchange of traffic between IP networks is IP prefix hijacking, which can occur accidentally (e.g., by misconfiguration) or intentionally (e.g., by malicious parties).

Incidents of IP prefix hijacking occurred as early as 1997, when a top-level autonomous system (AS) accidentally advertised routes for a large number of IP prefixes belonging to other network operators, creating a routing black hole and major disruption to the internet. Since then, IP prefix hijacking has occurred regularly, causing service disruption to hundreds of millions of internet users, and is considered one of the top threats to internet availability.

Fortunately, network operators and the broader industry have come together to address the risk of IP prefix hijacking. Specifically, RPKI has been standardized by Internet Engineering Task Force (IETF) with deployment strategies outlined by the Messaging Malware Mobile Anti-Abuse Working Group (M3AAWG) and is being deployed by cable operators and other network operators to prevent IP prefix hijacking. RPKI allows the rightful owner of IP address spaces to cryptographically assert the ownership of their prefixes. It then allows other parties to verify received BGP routes against the trusted cryptographic assertions to detect prefix hijacking. Today, about a third of IP prefixes announced on the internet are digitally signed using RPKI.

To help speed up the deployment of RPKI across the internet and improve the resilience of all networks, CableLabs is releasing an RPKI deployment best common practices (BCP) document. This document was developed by BGP experts from CableLabs and its members (including Charter, Comcast, Cox and Liberty Global) who have successfully deployed RPKI in their networks.

The RPKI deployment BCP provides a five-step guide to deploy both Route Origin Authorization (ROA) and Route Origin Validation (ROV), two major components of RPKI. In addition, it provides guidance on the monitoring of RPKI and BGP to ensure continuous health of the routing infrastructure.

To that end, we invite you to download the CableLabs BCP as a resource in deploying and maintaining RPKI in your networks. With the widespread deployment of RPKI, we can minimize the risk of IP prefix hijacking and increase the security and resiliency of the internet.

LEARN MORE

Security

How Cable Networks Secure Communications

How Cable Networks Secure Communications

CableLabs
CableLabs

Nov 12, 2021

The email you sent, the website you visited, the internet searches you performed, the internet purchases you just made—they all require strong security to protect against eavesdropping, changes to your messages, and those who would make these services unavailable to you. These service examples demonstrate the foundational triad of security: confidentiality, integrity, and availability.

Securing the confidentiality, integrity, and availability of broadband traffic can be applied at different layers of networking technology. Some messaging applications encrypt traffic (for confidentiality) at the upper levels of the OSI network model (the application, presentation, and session layers), but broadband traffic transits below just those top network layers.

The cable industry’s security technology ensures that the confidentiality, integrity, and availability of cable broadband technology happens at the lowest levels of the networking stack by encrypting the internet packets from cable subscribers’ homes and businesses. This security is provided through the cable industry’s use of its own public key infrastructure (PKI), the same type of security used by banks and the U.S Department of Defense for their own protection.

The cable industry created and manages a PKI with strong security. The digital keys used in the cable PKI have a very long private key (1024 bits and 2048 bits long), that is unique to each cable modem and part of each cable modem’s digital certificate. Digital certificates securely identify the modem and are used to help encrypt the traffic going to and from that modem. You may think of a digital certificate as a driver’s license for a cable modem to get onto the internet through a cable operator’s broadband network. The information in a digital certificate provides an immutable and mathematically attestable identifier that is embedded during the modem’s manufacture. The cable PKI encryption technology protects each cable network user from having anyone eavesdrop on their internet traffic, change, corrupt their communications, or introduce malware into the cable modem. Cable operators and cable device manufacturers use the cable PKI to securely update and manage cable devices in homes and businesses.

The cable modem and customer premise equipment (CPE) that help homes connect securely to the internet requires the same kind of patches and updates that other devices require to drive efficient and secure operation within the configuration required by the network to which they attach. Security specifications support SNMPv3 and TR-069, which are internet standards that provide commercial-grade security with ease of administration, and which include methods for authentication, authorization, access control and privacy in the configuration of devices. In the case of cable equipment, the firmware for these devices can be updated through a special secure channel by the network operator; this channel is secured similar to how the cable modem establishes its link. Firmware is the collection of all the software, memory, and operations that, akin to the medulla oblongata in the human body which passes messages between the brain and spinal cord, manages traffic to and from the subscriber home, and keeps the modem functioning. The firmware image is digitally signed by both the cable modem manufacturer and the network operator, whose public keys are accepted and recognized by the cable modem; this, and a special secure boot process, help make it increasingly difficult for malicious actors to compromise the device or network.

In addition to the cable PKI security controls, cable networks provide mechanisms to protect the routing and switching of broadband traffic once it leaves the cable broadband subscriber’s home or business. For example, source address verification ensures that origination packets are coming from proper, non-spoofed addresses. Additionally, the cable industry’s DOCSIS® Security provides several methods of filtering traffic, including enabling access control lists and security filters both at the cable modem and at the cable operator’s cable modem termination system, which connects a cable modem connects to the internet.

The cable industry uses security mechanisms that are broad and robust. These security mechanisms are continuously reviewed and improved as technology changes and security threats to cable broadband subscribers change. You can find more details in these blog posts The Cable Security Experience and 10G Integrity: The DOCSIS® 4.0 Specification and Its New Authentication and Authorization Framework.

CableLabs continues to work with cable operators and cable device manufacturers to increase cable broadband security beyond providing the encryption technology. These BCP’s, developed based on input from cable operators and cable device manufacturers, provide recommended security practices for cable operators and cable manufacturers and are aimed at improving the cybersecurity posture of devices and the networks they connect to. The BCP document strongly aligns with other industry and governmental security recommendations, such as the M3AAWG CPE Best Practices and recent publications from NIST and ENISA. Through continuous strengthening of security tools and practices, the cable industry works to protect its subscribers against those who would seek to eavesdrop, corrupt, or disrupt cable broadband access

Reference Gateway Device Security Best Common Practices:

Documentation: Gateway Device Security Best Common Practices Version V01

Blog: Raising the Bar on Gateway Device Security

Security

Raising the Bar on Gateway Device Security

Raising the Bar on Gateway Device Security

Brian Scriber
Distinguished Technologist and VP of Security & Privacy Technologies

Darshak Thakore
Principal Architect

Mark Walker
Vice President, Technology Policy

Oct 7, 2021

Today, CableLabs® has publicly released a set of best common practices (BCP) to enhance the security of cable modems, integrated access points, and home routers (collectively, known as “gateway devices”) against malicious activity and other cyber threats. This work builds on and extends CableLabs’ and the cable industry’s longstanding leadership in cybersecurity to ensure a consistent and robust baseline for gateway device security, increased economies of scale, and an ontology for simplified communication and procurement between network operators and device manufacturers.

The BCP Working Group is comprised of security technologists from CableLabs, network operators from around the world, and gateway device manufactures, including representatives from CableOne, Charter, Cisco, Cogeco, Comcast, Commscope, Cox, Liberty Global, MaxLinear, MediaCom, Shaw and Technicolor. In developing the BCP, the Working Group drew heavily upon well-established and widely accepted security controls, recognized broadly by industry and government security experts.

The cable industry has long employed extensive network security practices to ensure the confidentiality, integrity and availability of broadband services, including gateway devices. The BCP expands and standardizes these network security practices for gateway devices and complements cable operators’ broader set of security practices. For instance, DOCSIS® Security testing is performed on all gateway devices to ensure DOCSIS protocol conformance, including the verification of the correct implementation of public key infrastructure (PKI) authentication and identity management, BPI+ encryption, and EAE (Early Authentication and Encryption) secure provisioning requirements.

The BCP document goes beyond DOCSIS Security requirements and provides a framework for the full range of security considerations applicable to gateway devices, including hardware and manufacturing considerations, default security settings, configuration procedures, secure boot, roots of trust, software/firmware development and verification, encryption requirements for both data in transit and data at rest, and physical security, among others. To further ensure the robustness of the BCP, the working group compared and mapped the BCP to NIST’s general guidance for connected devices used by the federal government, to help confirm the scope was fully comprehensive of applicable security considerations.

The BCP represents the industry coalescing around a common set of security baseline requirements that furthers the following critical goals:

  1. Provide a common framework for security elements and controls within gateway devices, including cable modems, integrated Wi-Fi access points, and home routers, to align the varied approaches to device security across the industry.
  2. Create a community of manufacturers and network operators collaborating to enhance gateway device security.
  3. Leverage well-established and well-vetted security controls and practices to minimize the risk of unknowingly introduced vulnerabilities or other security weaknesses.
  4. Harmonize security requirements across network operators to drive increased economies of scale, lowering the cost of broadband deployment.
  5. Further protect network resources and broadband service from malicious attacks.
  6. Provide a framework for network operator assurance that enables verification of testable practices and configurations.
  7. Enable alignment across standards, regulatory, and compliance regimes through a transparent and open set of best common practices.
  8. Establish a security framework for gateway devices that builds in flexibility and agility, so that manufacturers and network operators can address and adapt to new threats and changes in the cyber risk landscape.

While this initial release is an important achievement, one that strives to be comprehensive in terms of security posture for gateway devices, we all recognize that this field is constantly evolving and advancing. We see the BCP as a framework that must and will be updated and maintained as network technology, device security, and unfortunately, adversary techniques continue to evolve. To that end, we invite and welcome additional gateway and modem manufacturers as well as additional network operators to join the working group as we continue to progress this effort.

On October 13, 2021, at 3:00 pm ET, we invite you to join our virtual panel session at SCTE Cable-Tec Expo to discuss and further explore Gateway Device Security and our work to develop the BCP.

Register for SCTE Cable-Tec Expo GDS Panel Session

Security

Practical Considerations for Post-Quantum Cryptography Deployment

Practical Considerations for Post-Quantum Cryptography Deployment

Massimiliano Pala
PKI Architectures, Director

Aug 17, 2021

It’s the year 2031, and the pandemic is in the past. While Dave drinks his morning coffee and reads the news, a headline catches his attention. A large quantum computer is finally operational! Suddenly, Dave’s mind is racing. After few seconds, as his heartbeat slows, he looks up into the mirror and proudly says, “Yes, we’re ready.” What you don’t know about Dave is that he’s been working for the past 10 years to make sure that all aspects of our broadband communications and access networks remain secure and protected. Besides searching for new quantum-resistant algorithms, Dave has been focusing on the practical aspects of their deployment and addressing their impact on the broadband industry.

Here in 2021, the broadband industry needs to start traveling the same path that Dave will have navigated 10 years from now. We need to make sure we remove the roadblocks ahead of time so that we can lay the groundwork for the adoption of new security tools like post-quantum (PQ) cryptography.

The Post-Quantum Cryptography Landscape

Although NIST is still finalizing its standardization process for PQ cryptography, there are interesting trends and practical long-term considerations for PQ deployment and the broadband industry that we can already infer.

Most of the algorithms that are still present in the final round of the algorithm competition are based on mathematical constructs called lattices, which, in practice, are collections of equally spaced vectors or points. Lattice-based cryptography security properties are rooted in the difficulty of solving certain topological problems for which there is not an efficient algorithm (even for a quantum computer), such as the Shortest Vector Problem (SVP) or the Closest Vector Problem (CVP). Algorithms like Falcon or Dilithium are based on lattices and produce the smallest authentication traces overall (i.e., signatures range from 700 bytes to 3,300 bytes).

Another class of algorithms to keep an eye on is based on isogenies. These algorithms use a different structure than lattices and have been proposed for key exchange algorithms. These new key-exchange algorithms—namely Key Encapsulation Mechanism (KEM)—leverage morphisms (or isogenies) among elliptic curves to provide “Diffie-Hellman–like” key exchange properties to implement Perfect Forward Secrecy. Isogeny-based encryption uses the shortest keys in the PQ algorithm landscape but is computationally very heavy.

Besides these two classes of algorithms, we should keep hash-based signature schemes in mind as a possible alternative. Specifically, they provide proven security at the expense of very large cryptographic signatures (public keys are extremely small) that hinder, at the moment, their adoption. A well-known hash-based algorithm that will probably be re-included in the NIST standardization process is SPHINCS+.

DOCSIS® Protocol, DOCSIS PKI and PQ Deployment

Now that you understand the available options to consider for your next-generation crypto infrastructure, it’s time to look at how these new algorithms impact the broadband environment. In fact, although the DOCSIS protocol has been using digital certificates and public-key cryptography since its inception, the broadband ecosystem relies on the RSA algorithm only—and that algorithm has very different characteristics than the PQ algorithms in consideration today.

The good news is that from a security perspective, minimal upgrades are required to replace the use of RSA using the latest version of the DOCSIS protocol (i.e., DOCSIS 4.0) when compared with previous versions. Specifically, DOCSIS 4.0 removes the dependency on the use of the RSA algorithm in terms of key exchange and leverages a standard signature format—namely, the Cryptographic Message Syntax (CMS)—to deliver signatures. CMS is already scheduled to be upgraded to provide standard support for PQ algorithms as soon as the algorithms standardization process ends. In DOCSIS 1.0–3.1, because of the dependency on the RSA algorithm for key exchange, the required protocol changes might be more extensive and employ the use of symmetric keys, in addition to RSA keys, to deliver secure authentications.

The size of the new algorithms is another important aspect of deployment. Although the lattice-based and isogenies-based algorithms are quite efficient for the sizes of authenticated (signature) or encrypted (key-exchange) data, they’re still an order of magnitude (or more) larger than what we’re used to today.

Therefore, the broadband industry needs to focus a first set of considerations surrounding the impact of cryptography on the size of authentication and authorization messages. In the DOCSIS protocol, the Baseline Privacy Key Management (BPKM) messages are used, at layer 2, to transfer authentication information across the cable modem and its termination system. Fortunately, because BPKM messages can provide support for any data size via fragmentation support, we don’t envision the need to update or modify the structure of Layer 2 authentication messages to accommodate the new size of crypto.

Somewhat connected to the size of the new crypto are the considerations related to algorithm performances. PQ algorithms, unlike RSA and ECDSA, are computationally very heavy and therefore might pose additional engineering hurdles when designing the hardware to support them. For end-entity devices such as cable modems and optical network units, there are various options to consider. One option, for example, is to look at the integration of modern microcontrollers that can offload computation and provide isolated environments in which algorithms can be securely executed. Another approach is to leverage trusted execution environments already available in many edge devices’ central processing units (CPUs), without the need to update today’s hardware architectures. On core devices, the added CPU load—when compared with the very fast RSA verifications—might require additional resources. This is an active area of investigation.

The final set of considerations is related to algorithm deployment models and certificate chain validation considerations. Specifically, because the current implementation paradigm for PQ algorithms required by NIST doesn’t use the hash-and-sign paradigm (it directly signs the data without hashing it first), there are some important considerations to make. Although this approach removes the security dependency on the hashing algorithm, it also introduces a subtle but important performance hit; the data to be authenticated or signed (i.e., when a device is trying to authenticate to the network) must be processed directly by the algorithm. This might require large data buses to carry the data to the MCU or to transition through the trusted execution environment on the CPU. Performance bottlenecks generated by the adopted signing mechanism have already been observed, and further investigations are needed to better understand the real impact over deployments.

For example, when signing with the “hash-and-sign” paradigm, the signing part of the operation on a 1TB document or 1KB document takes the same time (because you’re always signing the hash that’s only a few bytes in length). In comparison, when using the new paradigm (not possible with algorithms like RSA), signing times can differ wildly depending on the size of the data you’re signing. This problem is even more evident when addressing the costs associated with the generation and signing of hundreds of millions of certificates via this new approach. In other words, the new paradigm, if adopted, could potentially impact certificate providers and increase the costs associated with the signing of large quantities of certificates.

Available Tools and Projects

Now that you know where and what to look for, how can you start learning more about—and experimenting with—these new algorithms for real-world deployment?

One of the best places to start is the Open Quantum Safe (OQS) project that aims to support the development and prototyping of quantum-resistant cryptography. The OQS project provides two main repositories (open-source and available on GitHub): the base liboqs library, which provides a C implementation of quantum-resistant cryptographic algorithms, and a fork of the OpenSSL library that integrates liboqs and provides a prototype implementation of CableLabs’ Composite Crypto technology.

Although the OQS project is a great tool to start working with these new algorithms, the provided integration with OpenSSL doesn’t support generic signing operations: a limitation that might affect the possibility to test the new algorithms in different use-cases. To address these limitations and to provide better Composite Crypto support together with an hash-and-sign implementation for PQ algorithms, CableLabs started the integration of the PQ-enabled OpenSSL code with a new PQ-enabled LibPKI (a fork from the original OpenCA’s LibPKI repository) that can be used for building and testing these algorithms for all the aspects of the PKI lifecycle management, from validating the full certificate chain to generating quantum-resistant revocation information (e.g., CRLs and OCSP responses).

LET'S START PQ CODING!

Security

Transparent Security Outperforms Traditional DDoS Solution in Lab Trial

Transparent Security Outperforms Traditional DDoS Solution in Lab Trial

Randy Levensalor
Principal Architect, Future Infrastructure Group, Office of the CTO

Chris Sibley
Senior Engineer – Advanced Network Platforms, Cox Communications

May 20, 2021

Transparent Security is an open-source solution for identifying and mitigating distributed denial of service (DDoS) attacks and the devices (e.g., Internet of Things [IoT] sensors) that are the source of those attacks. Transparent Security is enabled through a programmable data plane (e.g., “P4”-based) and uses in-band network telemetry (INT) technology for device identification and mitigation, blocking attack traffic where it originates on the operator’s network.

Cox Communications and CableLabs conducted a proof-of-concept test of the Transparent Security solution in the Cox lab in late 2020. Testing was primarily focused on the following major objectives:

  • Compare and contrast performance of the Transparent Security solution against that of a leading commercially available DDoS mitigation solution.
  • Validate that INT-encapsulated packets can be transported across an IPv4/IPv6/Multiprotocol Label Switching (MPLS) network without any adverse impact to network performance.
  • Validate that the Transparent Security solution can be readily implemented on commercially available programmable switches.

This trial compared the effectiveness of Transparent Security with that of a leading DDoS mitigation solution. Transparent Security was able to identify and mitigate attacks in one second as compared with one minute for the leading vendor. We also validated that inserting and removing the INT header had no observable impact on throughput or latency.

The History and Updates of Transparent Security

We initially released the Transparent Security architecture and open-source reference implementation in October 2019. Since then, we’ve achieved several milestones:

Why Cox Is Interested

As the proliferation of IoT devices continues to increase, the number of devices that can be compromised and used to participate in DDoS attacks also increases. At the same time, the frequency of DDoS attacks continues to grow because of the widespread availability of DDoS for-hire sites that allow individuals to launch DDoS attacks for relatively little cost. These factors contribute to a trend of malicious traffic increasingly using upstream bandwidth on the access network.

Although currently available DDoS mitigation solutions can monitor for outbound attacks, they’re primarily focused on mitigating DDoS attacks directed at endpoints on the operator’s network. These solutions use techniques such as BGP diversion and Flowspec to drop traffic as it comes into the network. However, mitigating outbound attacks using these techniques aren’t effective because the malicious traffic will have already traversed the access network, where it has the greatest negative impact before the traffic can be diverted to a scrubber or dropped by a Flowspec rule.

Transparent Security offers the promise of near-instantaneous detection of outbound attacks, as well as the ability to mitigate that attack at the source, on the customer premises equipment (CPE), thereby preventing that traffic from using upstream access network resources.

In addition to Transparent Security’s DDoS mitigation capabilities, there are additional benefits to network performance/visibility in general. Implementation of Transparent Security on the CPE means that network operators can derive the specific device type associated with a given flow. This allows the operator to determine the type of IoT devices being leveraged in the attack.

This also opens myriad other possibilities—for example, reducing truck rolls by enabling customer service personnel to determine that a customer’s issue is with one specific device versus all the devices on the internal network. Another example would be the capability to track the path a given packet followed through the network by examining the INT metadata.

Consumers will see a direct benefit from Transparent Security. Once compromised devices are identified, the consumer can be notified to resolve the issue or, alternatively, rules can be pushed to the CPE to isolate that device from the internet while allowing the consumer’s other devices continued access. Such isolation mitigates the additional harm coming from compromised devices.  This additional harm can take the form of degraded performance, exfiltration of private data, breaks in presumed confidentiality in communications, as well as the traffic consumed through DDoS.  Less malicious traffic on the network provides for a better overall customer experience.

Lab Trial Setup

The test environment was designed to simulate traffic originating from the access network, carried over the service provider’s core backbone network, and targeting another endpoint on the service provider’s access network in a different market (e.g., an “east-to-west” or “west-to-east" attack).

The following diagram provides a high-level overview of the lab test environment:

Transparent Security Outperforms Traditional DDoS Solution in Lab Trial
 

In the lab trial, various types of DDoS traffic (UDP/TCP over IPv4/IPV6) were generated by the traffic generator and sent to the West Market Arista switch, which used a custom P4 profile to insert an INT header and metadata before sending the traffic to the West Market PE router. The traffic then traversed an MPLS label-switched path (LSP) to the East Market PE router, before being sent to the East Market Arista, which used a custom P4 profile to generate INT telemetry reports and to strip the INT headers before sending the original IPv4/IPv6 packet back to the traffic generator.

Results

When comparing and contrasting the performance of the Transparent Security solution against that of a leading commercially available DDoS mitigation solution, the lab test results were very promising. Detection of outbound attacks was rapid, taking approximately one second, and Transparent Security deployed the mitigation in five seconds. The commercial solution took 80 seconds to detect and mitigate the attack. These tests were run with randomized UDP floods; UDP reflection and TCP state exhaustion attacks were identified and mitigated by both solutions. In this trial, only packets related to the attack were dropped. Packets not related to the attack were not dropped.

The Transparent Security solution was implemented on commercially available programmable switches provided by Arista. These switches are being deployed in networks today. No changes to the Networking Operations System (NOS) were required to implement Transparent Security.

The tests validated that INT-encapsulated packets can be transported across an IPv4/IPv6/MPLS network without any adverse impact. There was no observable impact to throughput when adding INT headers, generating telemetry reports or mitigating the DDoS attacks. We validated that the traffic ran at line speed, with the INT headers increasing the packet size by an average 2.4 percent.

Application response time showed no variance with or without enabling Transparent Security. This suggests that there will be no measurable impact to customer traffic when the solution is deployed in a production network.

Conclusion and Next Steps

Transparent Security uses in-band telemetry to help identify the source of the DDoS attack.

This trial focused on using Transparent Security on switches inside the service provider’s network. For the full impact of Transparent Security to be realized, its reach needs to be extended to gateways on the customer premises. Such a configuration can mitigate an attack before it uses any network bandwidth outside of the home and will help identify the exact device that is participating in the attack.

This testing took place on a custom P4 profile based on our open-source reference implementation. We would encourage vendors to add INT support to their devices and operators to deploy programmable switches and INT-enabled CPEs.

Take the opportunity today to explore the opportunities for using INT and Transparent Security to solve problems and improve traffic visibility across your network.

SUBSCRIBE TO OUR BLOG