Comments
Networks

Cable Makes Its Mark at FTTH Connect

Jon Schnoor
Lead Architect: Wired Technologies

Jun 2, 2016

Over the past two years, members of the CableLabs Optical Technologies team had the privilege to speak at the Fiber-To-The Home (FTTH) Council’s yearly FTTH Connect event. FTTH Connect annually attracts many thought leaders from both the vendor and service provider communities.

One observation we made while attending FTTH Connect was the growing appetite of FTTH Connect attendees to learn more about cable industry initiatives and solutions. Not only were the presentations well attended, but in one instance the Q&A session lasted for 30 minutes past the allotted time. Presentations provided FTTH perspective in a cable network, motivation for fiber deployments to complement the HFC network, PON traffic modeling, and supporting cable’s triple play services with fiber home run implementations. This appetite for more cable knowledge was somewhat surprising but welcome.

The impetus for CableLabs’ involvement was not only to show the world that the cable industry is pushing FTTH solutions, but also to introduce the FTTH community to CableLabs as a leader of innovation and R&D solutions. CableLabs has introduced several solutions to provide a means and support strategies of operators for pushing fiber deeper into the HFC network, including FTTH. These solutions include DOCSIS Provisioning of EPON (DPoE), Triple Play over PON and the group of specifications based on the Distributed CCAP Architecture.

Based on the show in 2015, we set out to increase our contributions at the 2016 FTTH Connect event. We proposed an entire cable track to the FTTH Council and were unanimously approved. We then set out to offer cable’s story at this year’s conference. It begins with Guy McCormick, Senior Vice President at Cox Communications, who will be one of the shows keynote speakers. Cox Communications is one of the most forward-thinking cable companies in the world, and they have an aggressive strategy around FTTH deployments. Jon Schnoor will discuss how we achieve fiber parity with cable services to that of the HFC access network. Steve Burroughs will present how to move beyond technology specific provisioning and work toward an access network agnostic infrastructure through virtualization. Curtis Knittle will explore next generation PON solutions that will establish 100 Gbps EPON and include an operator’s perspective on their transition to FTTH including challenges, technology tradeoffs, operational challenges and solutions. Curtis Knittle is also hosting a panel regarding FTTH in cable, that will explore an operator’s perspective.

If you’re planning to attend FTTH Connect 2016, be sure to attend the cable industry sessions to see what is cool and interesting!

Comments
Consumer

Technology Implications of 2Gbps Symmetric Services

Jon Schnoor
Lead Architect: Wired Technologies

Jun 11, 2015

Service providers and municipalities alike continue their push toward offering gigabit services over fiber networks. In fact, fiberville is a web site dedicated to listing which service providers and municipalities provide fiber solutions. Recently, Comcast significantly upped the ante by announcing a 2 Gbps symmetric service that will become available in certain locations. The services announced will be 2 Gbps downstream and 2 Gbps upstream. This is a substantial announcement due to the 2 Gbps speeds and symmetrical services which facilitate faster file uploads which is of interest to individuals who work from home, small businesses and gamers.

With all that speedy yumminess, let’s examine some of the technologies required for delivering multi-gigabit symmetrical services to homes and businesses.

Setting the Stage

When a provider deploys broadband services there is typically a peak rate, above the advertised speeds, that provides the headroom necessary for them to support the speeds and service level agreements (SLAs) associated with the service.

When the total available bandwidth is shared among multiple users, like it is in PON solutions, an unscientific but common practice is for the network to support at least twice the highest advertised rate. Specifically, to support an advertised service of N Gbps, the peak rate must provide for at least 2xN Gbps. Thus, for a 2 Gbps service the peak rate must be at least 4 Gbps to safely support the SLA using common practices. This premise allows the operator to investigate and determine the technology to use in order to support the advertised speeds. Once the technology is chosen, then the engineering work required to build out the solution may begin.

Technology Options

Let’s look at the two fiber to the home solutions that will support a 2 Gbps symmetric service today: Point-to-Point Fiber and 10 Gbps Ethernet Passive Optical Network (10G-EPON).

Point to Point Fiber: Best Performance

Point-to-point topology is a “home-run” active Ethernet fiber implementation that provides dedicated fiber from the home all the way through the access network to the headend. It is analogous to building your own personal highway from home to your office so you can get to work faster. While this solution provides the ultimate future-proof network, in terms of bandwidth, flexibility and network reach, it requires a significant amount of fiber and associated optical transceivers. Running a dedicated fiber to a residential customer premise is both complex and resource intensive due to additional fiber management and ongoing maintenance. However, it delivers the best performance to meet customer needs.

point-to-point-topology
Point-to-Point Topology

10G-EPON: An Efficient 2-Gig Symmetrical Solution

While there are many flavors of Passive Optical Networks (PON), (see: OnePON), 10G-EPON with its symmetric 10 Gbps links, is the only standardized, and commercially available PON technology able to provide at least 4 Gbps peak rate to support a 2 Gbps symmetrical service level agreement. Because of its point-to-multipoint topology and passive implementation, 10G-EPON is a cost effective solution in terms of operations, fiber consolidation, and headend real estate required.

PON-topology
PON Topology

CableLabs has championed PON initiatives through contributions to international standards, hardware and software certification, and interoperability events. CableLabs is facilitating a common approach to provide fiber solutions that will allow for quicker and higher-scale PON deployments.

Conclusion

Both 10G-EPON and point-to-point fiber solutions can provide 2 Gbps symmetrical services, opening up a world of possibilities for cable operators and customers alike. From the realization of all-IP delivered services, more efficient network implementations, improved cloud services, and overall future proofing the network, 2 Gbps symmetrical fiber deployments are a reality today.

Jon Schnoor is a Senior Engineer at CableLabs.

Comments