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DISCLAIMER 

This document is published by Cable Television Laboratories, Inc. (“CableLabs®”) to provide 
information to the cable industry. CableLabs reserves the right to revise this document for any reason 
including, but not limited to, changes in laws, regulations, or standards promulgated by various agencies; 
technological advances; or changes in equipment design, manufacturing techniques or operating 
procedures described or referred to herein. This document is prepared by CableLabs on behalf of its cable 
operator members to facilitate the rendering, protection, and quality control of communications services 
provided to subscribers. 

CableLabs makes no representation or warranty, express or implied, with respect to the completeness, 
accuracy or utility of the document or any information or opinion contained in this document. Any use or 
reliance on the information or opinion is at the risk of the user, and CableLabs shall not be liable for any 
damage or injury incurred by any person arising out of the completeness, accuracy or utility of any 
information or opinion contained in this document. 

This document is not to be construed to suggest that any manufacturer modify or change any of its 
products or procedures, nor does this document represent a commitment by CableLabs or any member to 
purchase any product whether or not it meets the described characteristics. Nothing contained herein shall 
be construed to confer any license or right to any intellectual property, whether or not the use of any 
information herein necessarily utilizes such intellectual property. 

This document is not to be construed as an endorsement of any product or company or as the adoption or 
promulgation of any guidelines, standards, or recommendations. 
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EXECUTIVE SUMMARY 

Making the Internet faster is the goal of many product and service companies. Many strategies exist, from 
data caching to packet switching, performance improvements in Internet browser clients and server 
software, without forgetting the transport network scaling from the fiber core to the access edges.  

This report investigates two proposed protocol enhancements aimed at making the web browsing user 
experience better by optimizing the transport of web objects and thereby reducing the page load time. The 
two enhancements are Google SPDY, a replacement of the HyperText Transfer Protocol (HTTP) 
requiring client and server changes, and a TCP tune-up, an increase in the TCP initial congestion window 
accomplished by a setting change on the web servers. Both show promise, but there are some significant 
caveats, particularly with SPDY. SPDY is considered to be a strong candidate for standardization as 
HTTP/2.0. 

In addition to a discussion of the two enhancements, this report provides the results of laboratory testing 
on SPDY version 2 and the proposed increase in the TCP initial congestion window in a variety of 
simulated conditions, comparing the page load time when using the proposed enhancement to the page 
load time for the default case of HTTPS and current initial congestion window settings. 

The proposed enhancements generate mixed results: web page load times were reduced in some scenarios 
but increased significantly in others. The performance improvement (or degradation) varied depending on 
the number of servers, configuration of the initial TCP congestion window, and especially any network 
packet loss. The following results were obtained across all scenarios comparing SPDY and congestion 
window enhancements to standard HTTPS. 

• Average reduction in page load time was 29% 

• Best improvement was over 78% reduction in page load time 

• Worst cases showed a negative impact, resulting in a 3.3x increase in page load time 

These results lead us to the following conclusions: 

• The SPDY protocol is currently a moving target, and thus it would be challenging to realize a 
return on investment for general-purpose usage in MSO servers. 

• Protocol improvements, standardization in the IETF and wider adoption by the client/server 
software may warrant a second look at SPDY.  

• Some applications in controlled environments may gain by leveraging SPDY. SPDY might 
be a valuable tool where the MSO provides the servers, the client software, and the web content. 
An example application might be an HTTP-delivered remote user interface delivered to a Set-Top 
Box or IP video client. 

• If SPDY were adopted very widely it may have some secondary benefits for network operators 
through improved infrastructure scalability due to a significant reduction in concurrent TCP 
sessions, as well as a reduction in Packets Per Second. 

• The proposed increase in the TCP initial congestion window is straightforward, requires no 
client modifications, and on its own provides consistent (albeit modest) performance gains.  
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1 INTRODUCTION 

The current method of transporting web objects from a server to a client utilizes Hypertext Transfer 
Protocol version 1.1 (HTTP/1.1), running atop the Transport Control Protocol (TCP). HTTP/1.1 was 
published as an IETF RFC in 1999, and has since become the most widely used application-layer protocol 
on the Internet. TCP pre-dates HTTP/1.1 by about 18 years, and even though TCP has evolved over time, 
it is fundamentally unchanged, and runs atop IPv4 and IPv6. 

Since the advent of the World Wide Web 15+ years ago, access network bandwidths as well as server and 
client CPU horsepower have increased by a factor of approximately 1.5x year-over-year, yet the apparent 
speed of the web (from the web browsing user's perspective) has grown much more slowly. In part, this 
can be explained by a concomitant increase in web page complexity, as measured by any number of 
attributes including total page size, number of linked resources, amount of server-side code, and lines of 
JavaScript. However, there is a view that the underlying protocols used to transport web resources are 
becoming increasingly out-of-date with the network and computing resources that are in use today, and 
that significant improvements in performance (generally page load time) can be achieved by revisiting 
these fundamental technologies. 
 

 
 

Bolstering this view is the fact that while network bandwidths have been improving rapidly, network 
latencies have not, and there is little hope of achieving significant reductions in network latency, as it is 
dominated by propagation delay. The result is that a fundamental network parameter, the Bandwidth-
Delay Product (BDP), is much larger today than in the early days of the Internet. It is becoming clear that 
HTTP/1.1 and TCP are not particularly optimized for networks with high bandwidth-delay product. 
Figure 1 shows Google's view of the diminishing returns for HTTP/1.1 as network bandwidth increases. 

The user perception of the speed of the Internet–the time  
it takes to load a web page–has not followed Moore’s law. 
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Figure 1.  Effective Bandwidth of HTTP 

[Source: SPDY Essentials, Roberto Peon & William Chan, Google Tech Talk, 12/8/11] 
 

Furthermore, in order to maximize performance using the existing tools of HTTP/1.1 & TCP, web 
architects (browser, server and site developers) have employed work-arounds that have some negative 
implications. The most significant implications result from the use of multiple simultaneous TCP 
connections. Modern browsers will open up to six simultaneous TCP connections to each server from 
which they need to retrieve resources, and optimized websites will compound this by spreading content 
over multiple servers, a practice known as "domain sharding". The result is that a single browser may 
have 20 or more simultaneous TCP connections to the hosts of a particular site while it is downloading a 
single web page. The parallel nature of this approach is intended to reduce the page download time 
(compared to the alternative of a single, non-pipelined TCP connection), and in many cases it succeeds. 
However, a web browser with 20 or more simultaneous TCP sessions can drown out other applications 
that use a small number of TCP sessions (e.g., one). This is due to the fact that the TCP congestion 
avoidance algorithm provides approximately fair sharing of the bandwidth on the bottleneck link on a per-
TCP-session basis. Additionally, some browsers do not reuse TCP connections, so each web resource is 
retrieved using a separate TCP connection. The result is that the vast majority of sessions never reach the 
congestion avoidance phase, and network resources can therefore either be underutilized or excessively 
congested. The network overhead for establishing and tearing down all of the TCP connections can also 
be a concern. 

A number of efforts have sprung up to develop ways to improve page download time and consequently 
improve the web browsing user experience. This paper discusses two proposed enhancements, both 
originally proposed by Google as part of their "Let's Make the Web Faster" project 
[http://code.google.com/speed/]. The first is a replacement for HTTP/1.1, called SPDY, which aims to 
make more efficient use of the network in common web browsing scenarios. The second is an incremental 
enhancement to the TCP protocol in the form of an increase in the server's initial congestion window 
(initcwnd). 

http://code.google.com/speed/
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In addition to a discussion of the two proposed enhancements, this paper presents the results of laboratory 
testing conducted by CableLabs on both technologies independently, and on the combination of the two 
technologies. 
 

 

Could TCP or HTTP optimization help improve the load page time? 
 

Two proposed solutions are tested in this report. 
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2 SPDY 

SPDY [http://www.chromium.org/spdy] is an experimental protocol developed by Mike Belshe and 
Roberto Peon of Google in late 2009 to replace HTTP/1.1 communication for transporting web content 
between a client and a server. It is deployed in production on many Google servers but requires a 
compatible browser such as Google Chrome. The stated goals of SPDY are: 

• 50% reduction in page load time 

• Minimize deployment complexity 

• Avoid changes to content by web authors 

• Solve this collaboratively via open-source software 

At the time of this study, the current implemented version of SPDY is version 2 (SPDY/2). Version 3 is 
currently being developed. 

2.1 THE SPDY PROTOCOL 

SPDY/2 retains the HTTP/1.1 metadata, but replaces the transport aspects of HTTP with a more 
streamlined approach. SPDY has three basic features that are used to accelerate the loading of a page: 

• Multiplexed streams – The fundamental enhancement of SPDY is that multiple resources can be 
retrieved via a single TCP connection. The expectation (and current implementation in Chrome) 
is for the client to open a single TCP connection to each server, and to request all resources of the 
server over that single connection. The use of a single TCP connection in this way allows the 
congestion avoidance algorithm in TCP to more effectively manage data flow across the network. 
Also, the client can include multiple requests in a single message, thereby reducing overhead and 
the number of round-trip times necessary to begin file transfer for requests beyond the first. While 
this is similar to HTTP pipelining [http://en.wikipedia.org/wiki/HTTP_pipelining], the difference 
introduced by SPDY is that the server can transfer all of the resources in parallel (multiplexed) 
without the "head-of-line blocking" problem that can occur with HTTP pipelining.  

• Request prioritization – While SPDY may serve to decrease total page load time, one side-
effect of stream multiplexing is that a critical page resource might be delivered more slowly due 
to the concurrent delivery of a less critical resource. To prevent this, SPDY provides a way for 
the client to indicate relative priorities for the requested resources. For example, if a JavaScript 
library is required in order to generate URLs for additional page resources, the client can request 
that the library be delivered with higher priority so that it isn't holding up those subsequent 
requests. 

• HTTP header compression – SPDY mandates that HTTP headers be compressed to reduce the 
number of bytes transferred. HTTP Header compression has been an Internet standard but it is not 
widely used. Google SPDY makes it mandatory. This might be a fairly small gain on the response 
headers, but it can provide a significant benefit on the requests (which in many cases are entirely 
headers). For example, each request from a particular client to a particular server includes an 
identical user-agent string (which can be in excess of 100 bytes), and in some cases the same 
cookie is sent in each request. Both Chromium and Firefox developers have reported 
approximately 90% header compression using the proposed zlib compression. This could allow a 
lot more requests to be packed into each request packet. 

http://www.chromium.org/spdy
http://www.chromium.org/spdy
http://www.chromium.org/spdy
http://en.wikipedia.org/wiki/HTTP_pipelining
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SPDY also has two advanced features that can be used in certain cases to further accelerate the web user 
experience: 

• Server Push – SPDY allows the server to create a stream to the client, and via this stream send 
web resources that were not explicitly requested by the client. The expectation is that the client 
will cache the pushed resource, and then upon needing it, will retrieve it from local cache. This 
function could potentially be used by the server to push objects (of which the client isn't yet 
aware) that are necessary for rendering the current page. Additionally, this function could be used 
to push resources for related pages that the user may be likely to request. The heuristics used by 
the server to decide when/if to push objects and what those objects are is left to the server 
implementer. This feature is somewhat controversial, but the authors defend it by pointing out 
that it is better than the practice of "in-lining" resources into the html page, since it allows the 
pushed resources to be cached for multiple future usages. 

• Server Hint – SPDY defines a new header that the server can use to suggest additional resources 
that the client should request. This is a less forceful approach than the Server Push, and allows the 
client to be involved in the decision whether or not a particular resource is delivered. The client 
might, for example, examine its own cache and only request resources that are not resident in 
local cache. On the other hand, Server Hint theoretically requires one additional round trip that 
would be eliminated by Server Push. 

SPDY/2 runs solely over an encrypted (TLS) connection. The rationale for this is three-fold: 

1. TLS involves a client-server handshake to negotiate cipher-suite. The authors of SPDY extend 
this handshake to negotiate whether SPDY can be used. This Next Protocol Negotiation (NPN) 
[http://tools.ietf.org/id/draft-agl-tls-nextprotoneg] allows the use of the https:// URI, rather than a 
new spdy:// URI, and as a result a single html page can work for clients that support SPDY and 
clients that don't. 

2. TLS passes through firewalls and bypasses intermediaries. Many HTTP requests today are 
processed (and modified) by transparent proxies without the knowledge of the end-user. It would 
create a tremendous barrier to adoption of SPDY if it were necessary for intermediaries to be 
upgraded to handle the new protocol. 

3. Encryption is good. The authors of SPDY state a philosophical belief that all HTTP traffic should 
be encrypted. They cite the relative ease by which traffic (particularly Wi-Fi traffic) can be 
snooped. 

2.2 SPDY SERVER IMPLEMENTATIONS 

There are a number of SPDY server implementations that are in various stages of development as open 
source projects. The Chromium project maintains a list of the implementations available 
[http://www.chromium.org/spdy/]. Many of these implementations currently support a subset of SPDY 
functionality and/or support SPDY version 1. At the time of drafting this report, only two 
implementations appear to support SPDY/2 in a reliable way. The first is the Chromium "FLIP Server" 
(FLIP was an early internal code-name for SPDY within Google). This server is built off of the immense 
Chromium source tree. The second is a Javascript implementation called "node-spdy" which is built on 
the node.js server framework. 

Work was started on an Apache module for SPDY, but it is currently incomplete. 

http://tools.ietf.org/id/draft-agl-tls-nextprotoneg
http://www.chromium.org/spdy/
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2.3 SPDY CLIENT IMPLEMENTATIONS 

On the client side, the Chrome browser is the most important current implementation. The current version 
of Chrome supports SPDY/2 by default, and includes a built-in diagnostics function that allows the user 
to examine the active SPDY sessions [chrome://net-internals/#spdy]. The Mozilla Firefox browser 
includes SPDY/2 support as well, but is only available in the Firefox 11 "aurora" builds (the current 
mainline version is Firefox 9), and is disabled by default. Finally, the Silk browser in the Amazon Kindle 
Fire tablet computer purportedly utilizes SPDY/2 for its connection to the Amazon EC2 cloud when 
performing web acceleration. 

2.4 SPDY IN THE WILD 

In terms of live web content, the most significant, publicly available sites that serve content via SPDY are 
run by Google. Many of the Google properties have SPDY/2 enabled, including Gmail, Google Docs, 
Picasa, Google+, and Google Encrypted Search. All of these sites utilize only the basic SPDY features; 
there are no known live instances of Server Push or Server Hint. In addition, the web acceleration 
companies Cotendo (acquired by Akamai in Dec. 2011) and Strangeloop indicate that they have deployed 
SPDY in some capacity. 

2.5 SPDY PROTOCOL DEVELOPMENT AND IETF STANDARDIZATION 

Google has actively solicited input on enhancements to the SPDY/2 protocol. Up until very recently, 
development and discussion of SPDY/3 has taken place on an open, Google-managed forum. However, 
the SPDY/3 draft was submitted to the IETF HTTPbis working group on February 23, 2012, for 
comments [http://tools.ietf.org/id/draft-mbelshe-httpbis-spdy], and it is expected that some if not all of the 
further development will take place on the HTTPbis mailing list. Along with the draft came an IPR 
declaration by Google, which provides a royalty-free-with-reciprocity license.  

In addition, on January 24, 2012, the chair of the IETF HTTPbis WG proposed that work begin on an 
HTTP/2.0 based at least in part on SPDY. This proposal has sparked intense discussion in the HTTPbis 
working group. While it appears that many support the initiation of work on HTTP/2.0, it is less clear 
how much of SPDY will end up being an integral part of it. 

Google SPDY is deployed by  
Google for gmail, Picasa, Google+, Google Docs 
and Amazon for its Kindle Fire Silk web browser 

http://tools.ietf.org/id/draft-mbelshe-httpbis-spdy
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3 TCP INITIAL CONGESTION WINDOW 

The TCP initial congestion window (initcwnd) is used at the start of a TCP connection. In the context of 
an HTTP session, the server’s initcwnd setting controls how many data packets will be sent in the first 
burst of data from the server. It is a standard protocol parameter that can be changed on Linux servers via 
a simple command line. 

Absent packet loss or receiver window limits, the TCP slow start operation looks like: 

Table 1.  TCP Slow Start Operation 

Round-Trip # Client Server 

1 TCP SYN TCP SYN/ACK 

2 TCP ACK & HTTP GET <url> initcwnd data packets 

3 TCP ACKs 2*initcwnd data packets 

4 TCP ACKs 4*initcwnd data packets 

  and so on.... 

 

3.1 HISTORICAL SETTINGS FOR INITCWND 

A larger value for initcwnd will clearly result in fewer Round-Trip Times (RTTs) to deliver a file. 
However, the downside to an excessively large initcwnd is that there is an increased risk of overflowing a 
router buffer on an intermediate hop, resulting in an increase in latency from packet loss and 
retransmissions. A value of initcwnd that is greater than the Bandwidth-Delay Product (BDP) of the 
network path between the server and client has an increased likelihood of causing packet loss that may 
lead to poor performance. 

As network bandwidths have increased over time, the BDP has increased, and as a result the defined 
value for initcwnd has been adjusted. The early specifications for TCP [RFC1122, RFC2001] required 
that a TCP implementation set initcwnd to 1 packet. Starting in 2002 [RFC2414, RFC3390], the initcwnd 
value was raised to 4000 bytes (effectively 3 packets in most networks).  

Google has submitted an IETF draft [http://tools.ietf.org/id/draft-ietf-tcpm-initcwnd] proposing that 
initcwnd now be increased to at least 10 packets, based on a series of tests performed using production 
Google servers [http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf]. In Google’s tests, a value 
of 10-16 packets resulted in the minimum average latency for delivery of web resources. 

In November 2011, CDN Planet [http://www.cdnplanet.com] performed an assessment of CDNs to see 
what value is currently used for initcwnd. Many CDNs have already increased their initcwnd beyond 3 
packets, some as high as 10-16 packets. 

 

http://tools.ietf.org/id/draft-ietf-tcpm-initcwnd
http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf
http://www.cdnplanet.com/
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Figure 2.  Initcwnd Values in Use by CDNs 

[Source:  www.cdnplanet.com  Nov 16, 2011] 
 

This increase from a value of 3 to a value of 10 will result in the elimination of up to 2 RTTs for each file 
transfer. The maximum gain will be seen for files that take 9 packets to deliver (i.e., files around 11 kB in 
size). Files of that size would take 4 RTTs to deliver using the default initcwnd, but can be delivered in 2 
RTTs with the proposed increase, a 50% improvement. Files smaller than about 3 kB will not experience 
any acceleration. Figure 3 shows the expected percent reduction in file download time as a function of file 
size under the following assumptions:  

• 100ms RTT 

• 10 Mbps Downstream limit 

• 0% Random Packet Loss 

• TCP Receiver Window of 512 KB 

initcwind is the number of TCP packets sent during the initial burst of data. 
By default, web servers use an initcwnd setting of 3. 

 
The proposed enhancement is to set the default setting to 10. 

Some CDNs have increased it to 10 and even 16. 
Linux 2.6.39 increased the default window to 10. 

http://www.cdnplanet.com/
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Figure 3.  Expected Benefit in File Download Time Resulting from Initcwnd 

Increase 
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4 THE CURRENT WEB ENVIRONMENT 

4.1 CONTENT ENVIRONMENT 

The construction of web page content plays a very important role in determining the page load time. In 
order to validate the two proposed enhancements, we will create a test bed that consists of web servers, 
web clients and web content. We performed a survey of some popular (and resource heavy) websites in 
order to understand the content environment. The results shown in Table 2 indicate, for each site's home 
page, the number of servers from which content was drawn, the number of resources requested, the total 
transferred size of all page resources, and the page load time. The reported page load time is the total time 
to download all of the resources for the page. It is possible, and even likely, that one or more of these 
pages are largely complete (perhaps only missing some non-critical resources) in significantly less time 
than is reported here.  

Additionally, for each webpage we evaluated the percentage of total resources that were requested from 
the top N servers for the page, for values of N between 1 and 5. For example, Engadget receives 34% of 
the web objects from the most used server, 82% of the objects from 3 most used servers and 87% of them 
come from the 5 servers with the highest count. 

These servers may include the host servers for the website, CDN servers for images and media content, 
advertising servers for ad content, and analytics collection, among other types of resources. 

Table 2.  Website Survey 

     % of GETs from top N servers 

Page servers GETs total page 
size (KB) 

total time 
(s) N=1 N=2 N=3 N=4 N=5 

Engadget 26 278 1500 23 34% 67% 82% 85% 87% 

NY Times 27 148 1500 13.6 33% 49% 59% 67% 73% 

Gizmodo 25 116 3900 13.2 34% 60% 69% 76% 78% 

CNN 22 158 1180 12.6 59% 70% 75% 80% 83% 

comcast.net 12 55 606 12 51% 67% 75% 80% 84% 

ESPN 26 144 5400 11.6 40% 51% 60% 67% 70% 

Amazon 15 139 1100 11 34% 58% 81% 86% 90% 

RoadRunner 30 128 85 9.5 27% 48% 61% 65% 68% 

Wired 32 130 1200 8.9 48% 56% 61% 65% 68% 

eBay 14 53 520 8.6 23% 40% 55% 68% 75% 

LinkedIn 9 75 457 7.17 48% 80% 88% 92% 95% 
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     % of GETs from top N servers 

Page servers GETs total page 
size (KB) 

total time 
(s) N=1 N=2 N=3 N=4 N=5 

Hulu 12 193 2000 4.96 60% 79% 87% 95% 96% 

Yahoo 6 51 423 4.6 88% 92% 94% 96% 98% 

YouTube 6 37 2400 4.16 41% 68% 81% 92% 97% 

Google shopping 3 20 73 2.45 45% 90% 100% 100% 100% 

Average 18 115 1490 9.8 44% 65% 75% 81% 84% 

 

 
 

4.2 NETWORK ENVIRONMENT 

The network environment between the servers and the client plays an equally large role in determining 
page load time. The most important parameters that drive performance are the round-trip time, the 
bottleneck link bandwidth, and the packet loss rate.  

4.2.1 ROUND-TRIP TIME (RTT) 

In the absence of congestion, typical Internet round-trip times can range from as low as 10 milliseconds 
when accessing content served in close proximity, to as high as 500 milliseconds or more when accessing 
servers across continents. For wireline broadband customers in the U.S., the most popular websites can 
generally be reached with RTTs ranging from 15 ms to 150 ms. For the websites included in the survey in 
Section 4.1, a sample TCP RTT to each of the top-five servers (in terms of number of resources 
requested) from CableLabs headquarters in Louisville, Colorado, is shown (in milliseconds) in Table 3 
along with a summary of the minimum, mean, and max RTT of those top-five servers. The RTT was 
calculated by doing a TCP "ACK RTT" analysis of a packet capture of each page load using the 
Wireshark tool.  The ISP connection used during this testing consisted of two load-balanced 100 Mbps 
duplex links with a mean RTT of less than 2 ms. 

Average website: 
115 web objects totaling 1.5 MB from 18 different servers 

80% of content comes from the top 4 servers 
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Table 3.  Round-Trip Times to Website Servers in Mill iseconds 

Page server 1 server 2 server 3 server 4 server 5 min average max 

Engadget 63* 62* 64* 62* 38 38 57.8 64 

NY Times 64* 64* 62* 64* 64* 62 63.6 64 

Gizmodo 37* 39* 134 25 22 22 51.4 134 

CNN 46* 53 69* 32 45 32 49.0 69 

Comcast.net 65* 69* 94 28 71 28 65.4 94 

ESPN 64* 33 65* 64* 64* 33 58.0 65 

Amazon 35 72* 16* 98 33 16 50.8 98 

RoadRunner 56 58 29* 52* 61* 29 51.2 61 

Wired 70* 114 66* 24* 85 24 71.8 114 

eBay 62* 75 64* 62* 62 62 65.0 75 

LinkedIn 50* 72* 78 54 63* 50 63.4 78 

Hulu 65* 67* 66* 64* 22 22 56.8 67 

Yahoo 28 27 64 29 61 27 41.8 64 

YouTube 23 25 23 22 22 22 23.0 25 

Google shopping 34 42 43 22 - 22 35.3 43 

* denotes a host run by a CDN provider. 
 

 
 

When network links are congested, a phenomenon referred to as "bufferbloat" can result in an increase in 
RTT on the order of hundreds of milliseconds. Bufferbloat arises due to the fact that many network 
elements support much more buffering than is needed to maintain full link utilization. These oversized 
buffers will be kept full by the TCP (particularly when there are multiple simultaneous sessions), thereby 

The RTT measurements on sample sites 
Minimum RTT: 16ms 
Maximum RTT: 134ms 
Mean RTT: 53.8 ms 
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causing an increase in latency. In recent updates to the DOCSIS 3.0 specification, a new feature has been 
added to mitigate this effect by proper sizing of the cable modem's upstream buffer. At this time, 14 cable 
modem models from 10 manufacturers have been certified as supporting this feature. For more detail on 
bufferbloat and the DOCSIS Buffer Control feature, see: [http://www.cablelabs.com/specifications/CM-
GL-Buffer-V01-110915.pdf]. 

4.2.2 ACCESS NETW ORK DATA RATE 

Residential access network data rates have steadily risen over time, with a 10 Mbps downstream rate and 
1 Mbps upstream rate being fairly common in North America, and 20 Mbps x 2 Mbps rates becoming 
increasingly available. Many operators offer even higher tiers, with DOCSIS speeds in Europe up to 360 
Mbps on the very high end, but typically they currently have fairly low take rates. Some access networks 
may have lower speed limitations placed on the services such as public and outdoor Wi-Fi currently being 
deployed by MSOs. For purposes of our investigation of the two proposed technologies, we will utilize 
the 10x1 and 20x2 data rate configurations.  

4.2.3 PACKET LOSS 

It is important to note that packet loss due to router (or switch) buffer overflow is expected behavior in 
networks, particularly when TCP is utilized. In fact, packet loss due to buffer overflow is fundamental to 
the congestion avoidance algorithm in TCP; it is the only signal that the TCP has (absent the Explicit 
Congestion Notification field in IP packets) that it has saturated the link and needs to reduce its 
transmission rate. As a result, it is not a concern in this testing. The concern here is random packet loss 
due to noise, interference or network faults that will effectively send TCP an erroneous signal to reduce 
its transmission rate.  

In wired networks, packet loss due to noise is fairly uncommon, with packet loss rates of approximately 
10-5 being typical for DOCSIS networks. In wireless networks, packet loss can vary dramatically as a 
result of interference and fluctuations in carrier-to-noise ratio.  

http://www.cablelabs.com/specifications/CM-GL-Buffer-V01-110915.pdf
http://www.cablelabs.com/specifications/CM-GL-Buffer-V01-110915.pdf
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5 LABORATORY TESTING AND RESULTS 

5.1 GOALS 

The goals of the testing are to investigate the page load performance impacts of the two proposed 
technologies. In particular, we examine Google SPDY with an eye toward evaluating SPDY’s ability to 
achieve the stated performance goal and to understand what aspects of SPDY provide acceleration and in 
which scenarios. Testing is limited to the SPDY “basic” features; no testing of server-push or server-hint 
is included in this study, primarily due to the fact that the performance enhancement gained by using them 
would be heavily dependent on how they are configured and utilized by the website administrator. Some 
benchmarks of server-push and server-hint have been published by external sources; see 
[https://docs.google.com/View?id=d446246_0cc6c6dkr]. The results have not shown a statistically 
significant gain. 

As stated previously, the TCP initcwnd increase is tested both independently (using HTTPS) and in 
conjunction with SPDY. 

5.2 LABORATORY ENVIRONMENT 

The entire test network was virtualized on a dedicated VMWare ESX Virtual Server. The test network 
consisted of 7 virtual hosts, each having two network interfaces. A single network interface on each host 
was connected to a virtual LAN within the ESX environment. The second network interface on each host 
was connected to the corporate network. During the experiments, the CPU load on the virtualization 
server was checked to ensure that it was not impacting the results. 

 
Figure 4.  Test Bed Configuration 

https://docs.google.com/View?id=d446246_0cc6c6dkr
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5.2.1 WEB SERVER CONFIGURATION 

Four of the hosts were configured identically as web servers, with the following software: 

• OS: Ubuntu 11.04 

• Web Server: “Express-SPDY” written in JavaScript for node.js 

The "Express-SPDY" server is the melding of a compact and efficient open-source HTTPS server (known 
as "Express") with an open-source SPDY/2 implementation called "node-spdy". The implementation is 
written in JavaScript using the node.js server environment. This implementation was chosen over the 
Chromium package published by Google due to the fact that it was lightweight and could be deployed 
relatively easily. Unfortunately, the version of Express-SPDY available at the time of this testing was 
found to not be stable, and required some work to debug and fix prior to beginning any testing. Since our 
testing commenced, the author of node-spdy rewrote a large part of the package.  

 

5.2.2 CLIENT CONFIGURATIONS 

The remaining three hosts were configured as client machines. The primary client ran Windows 7, and the 
other two clients (used for spot testing) ran Windows XP and Ubuntu 11.04. 

All clients used the Chrome 16 browser, with the SPDY Benchmarking plugin, and were installed with 
Wireshark to capture network traffic. 

The Dummynet [http://info.iet.unipi.it/~luigi/dummynet/] network simulator was used to simulate the 
various network conditions. 

 

5.3 TEST CONDITIONS 

 

5.3.1 PROTOCOL OPTIONS 

As previously stated, the testing is intended to compare the SPDY protocol to the HTTPS protocol, and to 
investigate the use of the increased TCP Initial Congestion Window (initcwnd) (both with HTTPS and in 
conjunction with SPDY). As a result, we measured the time it took to load a web page using four different 
protocol options as shown in Table 4. One option defines the baseline scenario or “Base Case”: with 
HTTPS for transport and the default initcwnd setting of 3. The results for the three cases involving a 
proposed enhancement are then compared to the "Base Case".  

288 Test Variants executed  20-100 times each. 
3 protocol enhancement options tested 

3 typical web pages served across varying number of web servers 

http://info.iet.unipi.it/~luigi/dummynet/
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Table 4.  Matrix of Protocol Options 

 HTTPS SPDY 

initcwnd = 3 Base Case CASE 1 

initcwnd = 10 CASE 2 CASE 3 

 

5.3.2 WEB SITES 

Nine different "websites" were used to evaluate the impact that the content and server configuration 
would have on the test results. The nine websites were formed by the 3x3 matrix of three different server 
configurations and three different web pages as follows. 

5.3.2.1 Server Configurations 

The server configuration parameter determined how all of the web resources for a page were served.  

1. Server Case 1, all resources were served by a single server.  

2. Server Case 2, the resources were divided equally across two servers.  

3. Server Case 3, the resources were divided equally across four servers.  

5.3.2.2 Web Pages 

Three web pages were used in testing. These pages were chosen to span a range of possible page 
configurations. 

 
Page A consisted of 102 total resources, with a total page size of 369 KB. It was composed of the 
following resources: 

• 1 HTML file: 12.8 KB 

• 1 JavaScript Library (jquery.js): 94.5 KB 

• 100 JPEG images: min/mean/max/stddev size = 1.3/2.6/5.5/1.2 KB 

Page B consisted of 101 total resources, with a total page size of 1.4 MB. It was composed of the 
following resources: 

• 1 HTML file: 8.2 KB 

• 100 JPEG/PNG/GIF images:  

• min/mean/max/stddev size = 46B/14KB/103KB/24KB 

• Approximately log-uniform size distribution 

3 sample web pages used 
Page B most closely models a typical page  

based on the sites surveyed in Section 4.1. 
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Page C consisted of 11 total resources, with a total page size of 3.0 MB. It was composed of the 
following resources: 

• 1 HTML file: 0.8 KB 

• 10 JPEG images: min/mean/max/stddev size = 298/302/310/4 KB 

5.3.3 CHANNEL CONDITIONS 

Eight different channel conditions were used in the testing. These eight cases were formed from the 
2x2x2 matrix of the following parameters: 

• Configured Data Rate:  

• 10 Mbps downstream, 1 Mbps upstream  

• 20 Mbps downstream, 2 Mbps upstream 

• Round Trip Time: 

• 20 ms  

• 100 ms 

• Packet Loss Rate: 

• 0% 

• 1% 

The two Configured Data Rates were chosen to match two commonly used residential high-speed data 
service configurations. The Round Trip Times correspond to a fairly short RTT that models a user 
accessing a site that is located fairly close to them (or is accelerated by a CDN), as well as a longer RTT 
which models a U.S. coast-to-coast page load or a case where there is increased upstream latency due to 
bufferbloat. The two packet loss rates correspond to an idealistic case that might be approached by an 
end-to-end wired network connection and a case with packet loss that might be more typical of a network 
connection that includes a Wi-Fi link. 

5.3.4 TEST EXECUTION 

The test execution will be performed in the following fashion:  

• Run all 288 test conditions on Win 7 

• Run spot tests on WinXP and Ubuntu 

• For each test condition, perform 20 page loads (clearing cache and resetting connections before 
each load) and calculate median load time. 

5.4 TEST RESULTS 

The result of the spot tests on WinXP and Ubuntu were consistent with the results for the Win7 testing. 
The raw data for the WinXP and Ubuntu test cases are provided in the appendix, but will not be discussed 
further in this report. 

As described in Section 5.3.1, the 2x2 matrix of protocol options will be presented as three different 
"cases", where each case represents the gain achieved by using one of the three proposed protocol 
enhancement options compared to the base case. This section is broken into three subsections that 
correspond to the three cases. 
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For each case, the results comprise a five-dimensional matrix of test conditions. In order to present the 
results in a compact way, each subsection below will first examine the impact that website configuration 
has on the achieved gain, then second will examine the impact of the channel conditions.  

The results provide a comparison between the median web page download time achieved using the 
proposed protocol enhancement option and that which is achieved in the base case.  

5.4.1 CASE 1:   SPDY VS.  HTTPS 

Case 1 compares the median web page download time achieved using SPDY/2 to the median time 
achieved using HTTPS. The comparison is made for each website configuration and channel condition 
combination. The comparison is reported as a "gain", which is calculated as the ratio of median page load 
time using HTTPS to the median page load time using SPDY. As a result, gain values greater than 1 
indicate that SPDY/2 provides an advantage over HTTPS. As an additional point of reference, a gain of 2 
corresponds to a 50% reduction in page load time, the goal to which SPDY aspires. 

As stated above, the impact that the website configuration has on the achieved gain will be examined first. 

Table 5 shows the 3x3 matrix of website configurations. For each website, the maximum, minimum and 
mean gain values (across all channel conditions) are provided, in the manner shown below. 

max 
mean 

min 

In Table 5, gain values that represent SPDY/2 achieving the goal of 50% (or more) reduction in page load 
time are shaded green, and gain values that represent SPDY/2 degrading the page load time are 
shaded red. 

gain ≥ 2 
gain < 1 

Additionally, row-wise, column-wise, and overall statistics are calculated and shown around the periphery 
of the 3x3 matrix. 

Table 5.  Website Impact on SPDY Gain 

 1 server 2 servers 4 servers average 

Page A 
4.1 1.8 1.8 4.1 

2.4 1.3 1.3 1.7 
1.6 1.1 1.1 1.1 

Page B 
3.3 1.4 1.4 3.3 

1.7 1.0 1.0 1.3 
0.8 0.6 0.7 0.6 

Page C 
1.0 1.0 1.1 1.1 

0.5 0.7 0.9 0.7 
0.3 0.4 0.5 0.3 

average 
4.1 1.8 1.8 4.1 

1.6 1.0 1.1 1.2 
0.3 0.4 0.5 0.3 
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These results show that SPDY worked well for Page A (many smaller images), showing gains across all 
test conditions and an average gain of 1.7. For Page B (many images more typical size), the results were a 
bit more hit-or-miss, with SPDY not always resulting in improved performance. Nonetheless, on average 
a gain of 1.3 was achieved. Page C (small number of large images), on the other hand, resulted in almost 
universally worse performance with SPDY than with HTTPS. In the worst case, SPDY resulted in a 3.3x 
increase in page load time (gain of 0.3). On average SPDY took 1.4x longer (gain of 0.7) to download 
Page C than traditional HTTPS. 

In general, the SPDY impact (positive or negative) diminished as more servers were utilized. This is the 
result of the increased parallelism and decreased number of objects requested per SPDY session, which if 
taken to the extreme would result in a pattern of requests that is similar to the HTTPS case.  

The results shown in Table 6 examine the impact that channel conditions have on SPDY performance 
(relative to HTTPS). Since the channel conditions were formed from a 2x2x2 matrix of data-rate, RTT, 
and packet-loss rate (PLR), the results are depicted as two 2x2 matrices of data-rate and RTT, one 
corresponding to the 0% PLR test cases, and the other corresponding to the 1% PLR test cases. For each 
channel condition, the results for all nine websites are summarized via the maximum, mean, and 
minimum gain achieved. Similar to the row and column statistics provided in the website impact analysis 
in Table 5, summary statistics for all three dimensions are provided around the periphery of the 2x2x2 
cube (i.e., in the right-most column, the last row, and the third table).  
 

Table 6.  Channel Impact on SPDY Gain 

0% PLR 20ms 100ms average 

 2.1 4.1 4.1 

10/1 1.4 1.7 1.6 

 0.7 0.8 0.7 

 1.6 3.4 3.4 
20/2 1.2 1.6 1.4 

 0.5 0.7 0.5 

 2.1 4.1 4.1 
average 1.3 1.6 1.5 

 0.5 0.7 0.5 

    

1% PLR 20ms 100ms average 

 2.3 2.2 2.3 

10/1 1.1 0.9 1.0 

 0.4 0.3 0.3 

 2.0 1.7 2.0 
20/2 1.0 0.8 0.9 

 0.3 0.3 0.3 

 2.3 2.2 2.3 
average 1.0 0.8 0.9 

 0.3 0.3 0.3 

    



Analysis of Google SPDY and TCP initcwnd 

CableLabs® 25 

 20ms 100ms average 

 2.3 4.1 4.1 
10/1 1.3 1.3 1.3 

 0.4 0.3 0.3 

 2.0 3.4 3.4 

20/2 1.1 1.2 1.1 
 0.3 0.3 0.3 

 2.3 4.1 4.1 

average 1.2 1.2 1.2 
 0.3 0.3 0.3 

 

The most interesting observation here is the comparison between the two PLR tests.  SPDY provided 
significant gains when the PLR was 0% (average gain 1.5), but showed worse average performance than 
HTTPS when packet loss was 1% (average gain 0.9).  This effect was more pronounced in the large RTT 
cases as compared to the small RTT. 

This result points to a fundamental weakness of SPDY. With a typical HTTPS download of a web page, 
the browser will open a large number of simultaneous TCP connections. In this case, a random packet 
loss will cause the one affected connection to temporarily reduce its congestion window (and hence the 
effective data rate), but the other connections will be unaffected, and in fact may be able to 
opportunistically make use of the bandwidth made available by the affected connection. The result for 
HTTPS is that random packet loss has only a minor impact on page download time. In the case of SPDY, 
the number of parallel TCP connections is dramatically reduced (by as much as a factor of six), so that 
random packet loss has a much bigger impact on the overall throughput.  

In the absence of packet loss, SPDY provides better gains as the RTT increases. This is the result of 
reducing the number of round trips needed to fetch all of the page resources. Nonetheless, there were test 
cases with 0 packet loss where SPDY performed worse than HTTPS.  This only occurred with Page C; 
SPDY always provided a benefit for Pages A & B when there was no packet loss.  The root cause of the 
degradation is unknown. 

Additionally, SPDY generally shows more gain in the lower Data Rate cases. 

The overall average gain of 1.2 seen in our experiments aligns well with the performance gains that 
Google is seeing in their live deployments. In results presented in a December 8, 2011, Google TechTalk 
[http://www.cnx-software.com/2012/01/page/2/], they report a 15.4% improvement in page load time 
(equivalent to a gain of 1.18). 

 

 

5.4.2 CASE 2:   INITCW ND=10 VS. INITCW ND=3 

The initcwnd increase provides very modest gain across the majority of test cases. In a few cases there 
was a marginal degradation of performance compared to the default initcwnd case. Across all test 

SPDY/2 provided an average gain of 1.2  
(17% reduction in page load time) 

http://www.cnx-software.com/2012/01/page/2/


Analysis of Google SPDY and TCP initcwnd 

26 CableLabs® 

conditions an average gain of 1.1 (or 9% reduction in page load time) was seen, as indicated in Table 7 
and Table 8. 

Table 7.  Website Impact on Initcwnd Gain 

 1 server 2 servers 4 servers average 

Page A 
1.1 1.1 1.1 1.1 

1.0 1.0 1.0 1.0 
0.9 1.0 0.9 0.9 

Page B 
1.1 1.3 1.2 1.3 

1.0 1.1 1.0 1.0 
1.0 1.0 0.9 0.9 

Page C 
1.2 1.3 1.5 1.5 

1.1 1.1 1.2 1.1 
1.0 1.0 1.0 1.0 

average 
1.2 1.3 1.5 1.5 

1.1 1.1 1.1 1.1 
0.9 1.0 0.9 0.9 

 

Overall the Page C test cases showed a slightly higher gain over the other two pages. Since Page C 
involves large files, it isn't surprising that the effect is slightly more pronounced than in Page A. In Page 
A, the majority of resources can be delivered in 3 packets or less anyway, so the increase in initcwnd 
doesn't reduce the number of round-trips. 
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Table 8.  Channel Impact on Initcwnd Gain 

0% PLR 20ms 100ms average 
 1.1 1.2 1.2 

10/1 1.0 1.1 1.0 
 1.0 1.0 1.0 
 1.1 1.1 1.1 

20/2 1.0 1.0 1.0 
 1.0 0.9 0.9 
 1.1 1.2 1.2 

average 1.0 1.0 1.0 
 1.0 0.9 0.9 

    
1% PLR 20ms 100ms average 

 1.5 1.2 1.5 
10/1 1.1 1.1 1.1 

 0.9 1.0 0.9 
 1.4 1.3 1.4 

20/2 1.1 1.1 1.1 
 0.9 0.9 0.9 
 1.5 1.3 1.5 

average 1.1 1.1 1.1 
 0.9 0.9 0.9 
    

 20ms 100ms average 
 1.5 1.2 1.5 

10/1 1.1 1.1 1.1 
 0.9 1.0 0.9 
 1.4 1.3 1.4 

20/2 1.1 1.1 1.1 
 0.9 0.9 0.9 
 1.5 1.3 1.5 

average 1.1 1.1 1.1 
 0.9 0.9 0.9 

 

When viewing the results broken down by channel condition, we don't see a significant difference in gain 
from one channel condition to the next. Notably, even in the high RTT cases we don't see much change in 
the gain. This is likely due to the fact that the majority of resources had sizes that either fell below the 3 
packet default initcwnd, or were much larger (i.e., over 210 packets each for the images in Page C) so that 
the initcwnd change might save a single RTT for a transfer that took 9 RTTs using the default initcwnd. 
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5.4.3 CASE 3:   SPDY+INITCW ND=10 VS. HTTPS+INITCW ND=3 

The combination of SPDY and the initcwnd increase resulted in a benefit that was more than the product 
of the two individual gains. This is a result of the fact that, due to SPDY, all of the TCP sessions involved 
multiple round-trips, so the acceleration of initial data rate provided by the initcwnd increase resulted in 
tangible benefits. In fact, one case (Page A, single server) saw an astounding gain of 4.7. By examining 
the raw data in Appendix A.3, the data shows that this combination reduced the median page load time of 
8.7 seconds down to 1.9 seconds. Unfortunately, this result is not typical, and Page C again experienced 
worse performance when the new protocol options are used. The overall average gain seen was 1.4 across 
all test cases as shown in Table 9 and Table 10.  

Table 9.  Website Impact on SPDY+Initcwnd Gain 

 1 server 2 servers 4 servers average 

Page A 
4.7 2.3 1.5 4.7 

3.2 1.5 1.4 2.0 
2.2 1.2 1.2 1.2 

Page B 
3.3 1.6 1.5 3.3 

1.9 1.1 1.1 1.4 
0.9 0.6 0.7 0.6 

Page C 
1.0 1.0 1.1 1.1 

0.6 0.7 0.9 0.7 
0.3 0.4 0.6 0.3 

average 
4.7 2.3 1.5 4.7 

1.9 1.1 1.1 1.4 
0.3 0.4 0.6 0.3 

 

The initcwnd increase provided an average gain of 1.1  
(9% reduction in page load time) 
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Table 10.  Channel Impact on SPDY+Initcwnd Gain 

0% PLR 20ms 100ms average 
 3.2 4.7 4.7 

10/1 1.7 1.8 1.8 
 1.0 0.9 0.9 
 3.1 3.9 3.9 

20/2 1.6 1.7 1.6 
 0.7 0.7 0.7 
 3.2 4.7 4.7 

average 1.7 1.7 1.7 
 0.7 0.7 0.7 

    
1% PLR 20ms 100ms average 

 3.1 2.4 3.1 
10/1 1.2 0.9 1.1 

 0.4 0.3 0.3 
 2.8 2.2 2.8 

20/2 1.2 1.0 1.1 
 0.3 0.3 0.3 
 3.1 2.4 3.1 

average 1.2 1.0 1.1 
 0.3 0.3 0.3 
    

 20ms 100ms average 
 3.2 4.7 4.7 

10/1 1.5 1.4 1.4 
 0.4 0.3 0.3 
 3.1 3.9 3.9 

20/2 1.4 1.3 1.3 
 0.3 0.3 0.3 
 3.2 4.7 4.7 

average 1.4 1.3 1.4 
 0.3 0.3 0.3 

 

In the packet loss test cases, there was a fairly significant performance loss with SPDY, as reported in 
earlier test cases. This is particularly true in the high RTT cases.  

 

SPDY/2 with the initcwnd increase provided an average 
gain of 1.4 (29% reduction in page load time) 

 



Analysis of Google SPDY and TCP initcwnd 

30 CableLabs® 

5.4.4 RESULTS SUMMARY 

The results are summarized further in Table 11. A caveat on the average results presented here is worth 
noting: the 72 test cases were selected to test the protocol changes in a fairly wide range of conditions in 
order to understand the impact that individual factors have on the performance gains. As a result, the 72 
test cases likely do not comprise a statistically accurate random sampling of real-world sites, and so the 
average results presented here may not accurately reflect the average performance gain that would be seen 
in the real world. However, as noted previously, the average results do appear to align well with the 
average gains seen by Google via their live deployments with users utilizing the Chrome browser. 
Nonetheless, it is also interesting to examine the average gain achieved in a particular subset of the test 
conditions. For that we select the subset consisting of pages A&B operating on a wireline network 
(PLR=0%). For that subset, we see that the combination of SPDY/2 and the initcwnd increase achieves an 
average gain of 2.1 (52% reduction in page load time). 

Table 11.  Summary of Results 

 Case 1 
SPDY 

Case 2 
initcwnd 

Case 3 
SPDY+initcwnd 

Best Gain 
(all test conditions) 

4.1 
(A,1,10,100,0) 

1.5 
(C,4,10,20,1) 

4.7 
(A,1,10,100,0) 

Average Gain  
(all test conditions) 1.2 1.1 1.4 

Worst Gain 
(all test conditions) 

0.3 
(C,1,x,x,1) 

0.9 
(A,1,20,100,0) 

0.3 
(C,1,20,100,1) 

# test cases achieving gain ≥ 1 40 of 72 
(56%) 

58 of 72 
(81%) 

44 of 72 
(61%) 

# test cases achieving gain ≥ 2 8 of 72 
(11%) 

0 of 72 
(0%) 

14 of 72 
(19%) 

Average Gain 
(Pages A&B with PLR=0%) 1.8 1.0 2.1 

 

 

In the absence of packet loss, the combination of SPDY/2 
and the increased initcwnd can achieve the goal of 50% 

reduction in page load time for certain web pages. 
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6 RECOMMENDATIONS AND CONCLUSIONS 

The results presented here indicate that SPDY/2 in conjunction with the TCP Initial Congestion Window 
increase has the potential to improve or impair web page download performance depending on a number 
of factors. 

Deployment of SPDY/2 for general-purpose web servers should be considered in light the following 
concerns:  

1. While the Chrome browser is an important browser (approximately 25% market share as of Jan. 
2012), it is the only browser that truly utilizes SPDY out of the box at the time of writing this report.  

2. Some web page downloads were significantly impaired by SPDY. 

3. Work is underway on a revision to the protocol, and with standardization in the IETF a possibility in 
the near future, waiting may be worthwhile to see what develops in this space. 

On the other hand, for a controlled environment where the MSO provides the servers, the client software, 
and the web content, SPDY might be a valuable tool. An example application might be a remote user 
interface (RUI) that is delivered via HTTP to an MSO-controlled CPE device, e.g., to support a video 
service. Some specific use-cases include: an MSO-provided set-top box that utilizes an HTML-based 
Remote UI; and an MSO-provided Gateway device that caches user interface elements to serve to Internet 
Protocol Set-Top Boxes (IP-STBs), tablets, etc., in the home. Note that the basic features of SPDY are not 
expected to provide any tangible benefits as compared to HTTP for video streaming (e.g., HTTP Live 
Streaming, MS Smooth Streaming, MPEG-DASH). In those cases the client makes a series of requests for 
the video fragment files that make up the video program. Since multiple fragments are not requested 
simultaneously, the multiplexing feature of SPDY would not be utilized. Nor would there be any gains 
from request header compression. The SPDY server-push function could potentially be used to push 
fragment files into a local (e.g., Gateway) cache in advance of them being requested by the client, and this 
technique could be utilized to enable centralized control over video stream bitrate adaptation. But, a 
similar outcome could be accomplished more simply via an HTTP/1.1 PUT or POST method. 

In addition to potential uses for SPDY by cable MSOs, another area of interest might be the impact that 
SPDY would have on network traffic if it were to be widely adopted. In general the story here is good, by 
reducing the number of simultaneous TCP sessions and extending the duration of many of the sessions, 
other applications could see improved performance as a result of TCP congestion avoidance being 
invoked far more often. Secondly, the expectation would be to see a slight reduction in data usage, due to 
the greater efficiency that SPDY provides (fewer TCP control packets), as well as a slight increase in 
average packet size, due to the multiplexing of HTTP responses. Both of these factors will serve to reduce 
the packets per second rate of the network, which improves scalability of CMTSs, routers, DPI boxes, etc.  
Finally, equipment implementing Carrier Grade NAT (which will be a key element of the IPv6 transition 
in some networks) could see improved scalability as the number of simultaneous TCP connections is 
reduced. 

In regards to the increase in the TCP Initial Congestion Window, while we see only marginal gains 
resulting from this enhancement, the change can be made simply by changing a server operating system 
parameter. It requires no client modifications. As a result, we see no reason not to set the server initcwnd 
at the proposed value of 10.  
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APPENDIX A RAW DATA 

A.1 Ubuntu Raw Data 
Website Configuration Channel Condition Median Page Load Time (ms) 

Page Num Servers DS (Mbps) RTT (ms) PLR HTTPS, initcwnd=def SPDY, initcwnd=def 

A 1 10 100 1% 10771 5074 

A 2 10 100 1% 7697 6595 

A 4 10 100 1% 5929 4787 

B 1 10 100 1% 12520 13453 

B 2 10 100 1% 7968 10613 

B 4 10 100 1% 5559 7198 

C 1 10 100 1% 8468 28363 

C 2 10 100 1% 5711 15316 

C 4 10 100 1% 5588 10410 

 

A.2 WinXP Raw Data 
Website Configuration Channel Condition Median Page Load Time (ms) 

Page Num Servers DS (Mbps) RTT (ms) PLR HTTPS, initcwnd=def SPDY, initcwnd=def 

A 1 20 100 0% 8645 3625 

A 2 20 100 0% 5822 4650 

A 4 20 100 0% 4309 3611 

B 1 20 100 0% 10557 4707 

B 2 20 100 0% 6511 5386 

B 4 20 100 0% 4339 4361 

C 1 20 100 0% 4537 7329 

C 2 20 100 0% 3084 4872 

C 4 20 100 0% 3342 3892 

A 1 20 100 1% 11879 6004 

A 2 20 100 1% 8620 7145 

A 4 20 100 1% 6642 5448 

B 1 20 100 1% 14815 17546 

B 2 20 100 1% 9581 12625 

B 4 20 100 1% 6373 7975 

C 1 20 100 1% 10641 35263 

C 2 20 100 1% 7748 19906 

C 4 20 100 1% 7656 13092 

A 1 10 100 0% 8644 4012 

A 2 10 100 0% 5786 4675 

A 4 10 100 0% 4221 3698 
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Website Configuration Channel Condition Median Page Load Time (ms) 

Page Num Servers DS (Mbps) RTT (ms) PLR HTTPS, initcwnd=def SPDY, initcwnd=def 

B 1 10 100 0% 10557 4325 

B 2 10 100 0% 6414 5566 

B 4 10 100 0% 4358 4548 

C 1 10 100 0% 4830 7488 

C 2 10 100 0% 3138 5084 

C 4 10 100 0% 3249 4172 

A 1 10 100 1% 11537 5173 

A 2 10 100 1% 8179 6886 

A 4 10 100 1% 6201 5116 

B 1 10 100 1% 14772 15624 

B 2 10 100 1% 9388 12406 

B 4 10 100 1% 6232 7467 

C 1 10 100 1% 9573 30003 

C 2 10 100 1% 7581 18297 

C 4 10 100 1% 7606 12496 

 

A.3 Win7 Raw Data 
Website 

Configuration Channel Condition Median Page Load Time (ms) 

Page Num 
Servers DS (Mbps) RTT (ms) PLR HTTPS, 

initcwnd=def 
SPDY, 

initcwnd=def 
HTTPS, 

initcwnd=10 
SPDY, 

initcwnd=10 

A 1 20 20 0% 2651 1618 2642 854 

A 2 20 20 0% 1881 1175 1774 887 

A 4 20 20 0% 1755 1262 1695 1207 

B 1 20 20 0% 4441 4084 4435 2063 

B 2 20 20 0% 2991 2398 2951 2041 

B 4 20 20 0% 2466 1979 2376 1694 

C 1 20 20 0% 2373 5112 2180 3261 

C 2 20 20 0% 2175 2644 2269 2195 

C 4 20 20 0% 2215 2278 2198 2125 

A 1 20 100 0% 7341 2184 8387 1894 

A 2 20 100 0% 5517 4471 5471 3990 

A 4 20 100 0% 4338 3492 4171 3169 

B 1 20 100 0% 9382 2939 9867 3082 

B 2 20 100 0% 6503 5112 6275 5541 

B 4 20 100 0% 5292 4125 5440 3880 

C 1 20 100 0% 4740 4893 4461 5085 

C 2 20 100 0% 4161 5669 3677 5591 

C 4 20 100 0% 4313 4697 3780 4373 
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Website 
Configuration Channel Condition Median Page Load Time (ms) 

Page Num 
Servers DS (Mbps) RTT (ms) PLR HTTPS, 

initcwnd=def 
SPDY, 

initcwnd=def 
HTTPS, 

initcwnd=10 
SPDY, 

initcwnd=10 

A 1 20 20 1% 4213 2091 4271 1499 

A 2 20 20 1% 18428 14762 18600 13693 

A 4 20 20 1% 14862 12015 15398 11542 

B 1 20 20 1% 6811 5776 6682 5049 

B 2 20 20 1% 29509 33087 23488 29776 

B 4 20 20 1% 18085 25951 19745 18999 

C 1 20 20 1% 3509 11767 2985 11037 

C 2 20 20 1% 22234 47691 20874 47068 

C 4 20 20 1% 28099 32248 20600 26658 

A 1 20 100 1% 11024 6300 10607 5092 

A 2 20 100 1% 30155 26138 28402 24695 

A 4 20 100 1% 24625 22404 21919 16357 

B 1 20 100 1% 14352 17765 13116 15681 

B 2 20 100 1% 36520 60658 32067 59662 

B 4 20 100 1% 24893 35236 27591 31443 

C 1 20 100 1% 10311 33026 8927 33167 

C 2 20 100 1% 41841 101007 31538 100423 

C 4 20 100 1% 37827 61020 31629 58993 

A 1 10 20 0% 2854 1638 2611 885 

A 2 10 20 0% 2112 1185 1968 932 

A 4 10 20 0% 2355 1289 2315 1533 

B 1 10 20 0% 4875 2324 4508 2077 

B 2 10 20 0% 3469 2547 3346 2165 

B 4 10 20 0% 3117 2312 3215 2128 

C 1 10 20 0% 3356 4994 3247 3511 

C 2 10 20 0% 3258 3272 3215 3141 

C 4 10 20 0% 3249 3232 3247 3146 

A 1 10 100 0% 8692 2126 8417 1853 

A 2 10 100 0% 5573 4466 5696 4060 

A 4 10 100 0% 4633 3598 4405 3405 

B 1 10 100 0% 10301 3126 10278 3091 

B 2 10 100 0% 6762 5890 6730 5503 

B 4 10 100 0% 5615 3959 5386 4114 

C 1 10 100 0% 4850 6012 4533 5104 

C 2 10 100 0% 5480 6162 4741 5965 

C 4 10 100 0% 5467 4987 4798 4817 

A 1 10 20 1% 4523 2000 4057 1457 

A 2 10 20 1% 17564 12570 15869 12810 
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Website 
Configuration Channel Condition Median Page Load Time (ms) 

Page Num 
Servers DS (Mbps) RTT (ms) PLR HTTPS, 

initcwnd=def 
SPDY, 

initcwnd=def 
HTTPS, 

initcwnd=10 
SPDY, 

initcwnd=10 

A 4 10 20 1% 13525 12200 14491 9767 

B 1 10 20 1% 6998 4819 6140 4751 

B 2 10 20 1% 27637 32944 28855 31193 

B 4 10 20 1% 20083 22505 17064 19742 

C 1 10 20 1% 3822 10477 3582 9801 

C 2 10 20 1% 24029 49178 23001 47226 

C 4 10 20 1% 25864 29327 17777 30610 

A 1 10 100 1% 11049 5124 10655 4636 

A 2 10 100 1% 29747 27242 27351 22603 

A 4 10 100 1% 23708 19451 20964 19999 

B 1 10 100 1% 14416 16466 13113 15309 

B 2 10 100 1% 34631 62502 34802 55112 

B 4 10 100 1% 23805 35175 22913 31825 

C 1 10 100 1% 10042 30557 8767 31672 

C 2 10 100 1% 38520 92986 31824 90527 

C 4 10 100 1% 32947 63725 30410 56366 

C 4 10 100 1% 7454 12343 5607 11048 
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