

!

!

A C C E S S N E T W O R K T E C H N O L O G I E S
!

ACTIVE QUEUE MANAGEMENT
ALGORITHMS FOR DOCSIS 3.0

!
A Simulation Study of CoDel, SFQ-CoDel

and PIE in DOCSIS 3.0 Networks

Prepared by:
 Greg White
 Principal Architect, Access Network Technologies
 g.white@cablelabs.com

CableLabs R&D Lead:
 Dan Rice
 Vice President, Access Network Technologies
 d.rice@cablelabs.com

April 2013
© Cable Television Laboratories, Inc., 2013

Active Queue Management Algorithms for DOCSIS 3.0

ii CableLabs®

DISCLAIMER

This document is published by Cable Television Laboratories, Inc. (“CableLabs®”) to provide
information to the cable industry. CableLabs reserves the right to revise this document for any reason
including, but not limited to, changes in laws, regulations, or standards promulgated by various agencies;
technological advances; or changes in equipment design, manufacturing techniques or operating
procedures described or referred to herein. This document is prepared by CableLabs on behalf of its cable
operator members to facilitate the rendering, protection, and quality control of communications services
provided to subscribers.

CableLabs makes no representation or warranty, express or implied, with respect to the completeness,
accuracy or utility of the document or any information or opinion contained in this document. Any use or
reliance on the information or opinion is at the risk of the user, and CableLabs shall not be liable for any
damage or injury incurred by any person arising out of the completeness, accuracy or utility of any
information or opinion contained in this document.

This document is not to be construed to suggest that any manufacturer modify or change any of its
products or procedures, nor does this document represent a commitment by CableLabs or any member to
purchase any product whether or not it meets the described characteristics. Nothing contained herein shall
be construed to confer any license or right to any intellectual property, whether or not the use of any
information herein necessarily utilizes such intellectual property.

This document is not to be construed as an endorsement of any product or company or as the adoption or
promulgation of any guidelines, standards, or recommendations.

ACKNOWLEDGMENTS

The author wishes to thank: Kathleen Nichols for her contribution of the CoDel and SFQ-CoDel
implementations and for her development of a number of the traffic models; Joey Padden, Takashi
Hayakawa, and Dave Täht for their significant contributions to the development of the simulation
platform and testing methodology; Rong Pan, Preethi Natarajan, Mythili Prabhu and Chiara Piglione for
providing the PIE implementation, and for their work on tuning it for the DOCSIS MAC.

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® iii

Table of Contents
EXECUTIVE(SUMMARY(...(1!

1! INTRODUCTION(...(2!

1.1! WHY!IS!LATENCY!IMPORTANT?!...!2!
1.2! MEGABITS!MYTH?!..!3!
1.3! "BUFFERBLOAT"!...!4!
1.4! MEASURING!BUFFERBLOAT!...!5!
1.5! SOLUTIONS?!..!9!

2! ACTIVE(QUEUE(MANAGEMENT(ALGORITHMS(..(10!

2.1! CODEL!..!10!
2.1.1! CoDel)in)DOCSIS)3.0)...)11!

2.2! SFQACODEL!..!11!
2.3! PIE!..!13!

3! SIMULATION(MODEL(...(14!

3.1! DOCSIS!MODEL!UPDATES!...!14!
3.2! QUEUE!MANAGER!CONFIGURATIONS!..!14!
3.3! CONGESTION!SCENARIOS!..!14!
3.4! DOCSIS!SERVICE!CONFIGURATION!...!16!
3.5! TOPOLOGY!UPDATES!...!16!
3.6! TRAFFIC!MODEL!UPDATES!..!17!
3.7! TRAFFIC!SCENARIOS!...!18!
3.8! APPLICATION!METRICS!...!19!

4! SIMULATION(RESULTS(...(19!

4.1! GAMING!TRAFFIC!..!19!
4.1.1! Gaming)Packet)Latency)...)19!
4.1.2! Gaming)Packet)Loss)..)23!
4.1.3! Sensitivity)of)Gaming)Applications)to)Packet)Latency)and)Loss)..)25!

4.2! WEB!PAGE!LOAD!TIME!..!29!
4.3! VOIP!AUDIO!QUALITY!..!32!
4.4! BULK!TCP!UPLOAD!PERFORMANCE!A!SHORT!TIME!SCALE!..!35!
4.5! BULK!TCP!UPLOAD!PERFORMANCE!A!LONG!TIME!SCALE!...!37!

5! CONCLUSION(...(39!

5.1! NEXT!STEPS!...!39!

APPENDIX(A! REFERENCES(...(40!

Active Queue Management Algorithms for DOCSIS 3.0

iv CableLabs®

List of Figures
FIGURE 1 - PAGE LOAD TIME VS. ROUND-TRIP TIME ..3!
FIGURE 2 - PAGE LOAD TIME VS. BANDWIDTH ..3!
FIGURE 3 - BUFFERING DELAY IN RESIDENTIAL BROADBAND NETWORKS ...5!
FIGURE 4 - FCC/SAMKNOWS DATA ON LATENCY UNDER LOAD ..6!
FIGURE 5 - ESTIMATED CUMULATIVE PROBABILITY OF BUFFERING LATENCY ...8!
FIGURE 6 - CDF OF ESTIMATED ROUND-TRIP BUFFERING DELAY ..9!
FIGURE 7 - SIMPLIFIED CODEL ALGORITHM BEHAVIOR ..11!
FIGURE 8 - STOCHASTIC FLOW QUEUING ..12!
FIGURE 9 - LIGHT RF CONGESTION ...15!
FIGURE 10 - MODERATE RF CONGESTION ...16!
FIGURE 11 - SIMULATOR TOPOLOGY ...17!
FIGURE 12 - GAMING TRAFFIC LATENCY DETAIL ...20!
FIGURE 13 - GAMING TRAFFIC LATENCY VS. RF CONGESTION AND VS. TRAFFIC LOAD ..21!
FIGURE 14 - GAMING TRAFFIC LATENCY SUMMARY ...23!
FIGURE 15 - GAMING PACKET LOSS - LIGHT TRAFFIC SCENARIOS ..24!
FIGURE 16 - GAMING PACKET LOSS - MODERATE TRAFFIC SCENARIOS ...24!
FIGURE 17 - GAMING PACKET LOSS - HEAVY TRAFFIC SCENARIOS ..25!
FIGURE 18 - GAMING PACKET LOSS - ALL SCENARIOS ...25!
FIGURE 19 - IMPACT OF LATENCY ON WIN PROBABILITY FOR QUAKE 3 ...27!
FIGURE 20 - IMPACT OF PACKET LOSS ON WIN PROBABILITY FOR QUAKE 3 ...28!
FIGURE 21 - IMPACT OF JITTER ON WIN PROBABILITY FOR QUAKE 3 ..28!
FIGURE 22 - WEB PAGE LOAD PERFORMANCE DETAIL ...30!
FIGURE 23 - WEB PAGE LOAD PERFORMANCE VS. RF CONGESTION AND VS. TRAFFIC LOAD31!
FIGURE 24 - WEB PAGE LOAD PERFORMANCE - SUMMARY ..32!
FIGURE 25 - VOIP AUDIO QUALITY - LIGHT TRAFFIC SCENARIOS ..33!
FIGURE 26 - VOIP AUDIO QUALITY - MODERATE TRAFFIC SCENARIOS ..33!
FIGURE 27 - VOIP AUDIO QUALITY - HEAVY TRAFFIC SCENARIOS ...34!
FIGURE 28 - VOIP AUDIO QUALITY - ALL SCENARIOS ..34!
FIGURE 29 - SHORT TERM TCP PERFORMANCE ...36!
FIGURE 30 - SHORT TERM TCP PERFORMANCE USING PIE ...37!
FIGURE 31 - LONG TERM TCP PERFORMANCE ..38!

List of Tables
TABLE 1 - SNAPSHOT OF NETALYZER TESTS OF SPEED AND BUFFERING LATENCY ..7!
TABLE 2 - TRAFFIC SCENARIOS ...18!
TABLE 3 - QUALITATIVE SUMMARY OF GAMING PERFORMANCE ..26!

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 1 1 1

EXECUTIVE SUMMARY

This paper describes the results of a simulation study of three active queue management algorithms
applied to the upstream transmission buffer in a DOCSIS 3.0 cable modem. This paper is a follow-on to
an earlier study which examined the "Controlled Delay" (CoDel) active queue management algorithm in a
simulated DOCSIS 3.0 cable modem. This expanded study looks at CoDel in more depth, and compares it
to two other promising active queue management algorithms, Stochastic Flow Queue - CoDel (SFQ-
CoDel) and Proportional Integral Enhanced (PIE). These three queue management algorithms are
compared to existing (tail drop) buffering implementations that exist in current cable modems across a
range of latency-sensitive applications.

It is demonstrated that current cable modem implementations result in severe degradation of user
experience for latency-sensitive applications in situations where the user is simultaneously uploading a
file via TCP. The goal of the active queue managers in this study is to prevent the degradation of latency-
sensitive applications, while not impacting the TCP upload performance.

The "Stochastic Flow Queue - Controlled Delay" active queue manager displays extremely good
performance in most traffic scenarios, enabling up to 200x reduction in latency for gaming traffic, 10x
reduction in web page load time, and pristine VoIP quality, all while minimally impacting TCP upload
performance.

The "Proportional Integral Enhanced" active queue manager similarly provided very good performance,
and is optimized for efficient implementation in existing cable modems.

Active Queue Management Algorithms for DOCSIS 3.0

2 CableLabs®

1 INTRODUCTION

1.1 WHY IS LATENCY IMPORTANT?

Packet forwarding latency can have a large impact on the user experience for a variety of network
applications. The applications most commonly considered as latency-sensitive are real-time interactive
applications such as VoIP, video conferencing and networked "twitch" games such as first-person shooter
titles. However, other applications are sensitive as well; for example, web browsing is surprisingly
sensitive to latencies on the order of hundreds of milliseconds.

There are established models for the degradation in user experience for VoIP caused by latency. In the
model we use for estimating VoIP quality, every additional 20 ms in latency causes a decrease in the
VoIP Mean Opinion Score (MOS) of approximately 0.005 MOS points up to a latency of 177 ms. Beyond
the threshold of 177 ms, each additional 20 ms of latency reduces VoIP quality MOS score by
approximately 0.13 MOS points.

While online games don't have similar well-vetted models for the impact that network parameters have on
user experience, a number of researchers have studied the topic, and some data exists to indicate that
access network latencies should be kept below 20 ms in order to provide a good user experience.

Loading a web page involves an initial HTTP GET method to request the download of an HTML file,
which then triggers the download of dozens or sometimes hundreds of resources that are then used to
render the page. While many servers may be involved in providing the page contents, generally speaking,
the majority of the resources are served from a small number (4 or 5) of servers. Web browsers will
typically fetch the resources from each server by opening up multiple (typically 6) TCP connections to the
server, and requesting a single resource via each connection. Once each individual resource is received,
the browser will close the TCP connection and open a new one to request the next resource, thus keeping
the same number of connections open at a time. The result of this hybrid parallel-serial download is that
the page load time is in some cases driven by the serial aspect, i.e., the number of sequential downloads
(one completing before the next can start), of which there may be a dozen or more. Round-Trip latency
can impact the page load time due to the fact that completion of each resource download is delayed by
any additional round-trip time in the network. Thus, when RTT increases, page load time can increase by
10x-20x that amount.

Related to their SPDY protocol, the developers at Google presented a "Google Tech Talk" [Peon]. That
talk was intended to provide motivation for the development of SPDY as HTTP/2.0, a replacement for
HTTP 1.1, and they illustrate the sensitivity that page-load time has relative to the round-trip time.

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 3 3 3

Figure 1 - Page Load Time vs. Round-Trip Time

Figure 1 shows that as the round-trip time between the Web browser and the servers decreases, the
page-load time decreases linearly. For the Web page that they used in generating that plot, it shows a 14x
multiplier. For example, a 200 millisecond increase in round-trip time results in a 2.8 seconds increase in
page load time, and it doesn't matter whether that increase in round-trip time comes on the upstream leg
of the connection or the downstream leg.

So it is clear that there is a benefit to keeping network latency low if we are interested in ensuring good
user experience for a range of applications.

1.2 MEGABITS MYTH?

Contrast the above with the sensitivity of page load time versus the link bandwidth and you can see that,
at the rates that cable modem customers are getting today, we are really in the space of diminishing
returns. Anything beyond about 6 Mbps returns almost imperceptible improvements in page load time.

Figure 2 - Page Load Time vs. Bandwidth

%DFNJURXQG��3HVN\�5RXQG�7ULSV

Page%Load%Time%vs.%RTT

%DFNJURXQG��3HVN\�5RXQG�7ULSV

Page%Load%Time%vs.%BW

Active Queue Management Algorithms for DOCSIS 3.0

4 CableLabs®

Similarly, many of the other network applications operate at data rates well below what is commonly
provisioned for cable modem service.

There is a lot of focus on bandwidth: it's the top-line number that has been used to market high-speed data
service. For the foreseeable future that will probably be the case, but when it comes down to the user
experience for the actual applications that broadband customers are using, improvements in latency are
more important at this point than improvements in bandwidth.

Some aspects of latency are hard to fix. There is the propagation delay from the user to the server, or for a
VoIP session, between two users. There's not much you can do about the speed of light, but routing paths
can be made as short as possible, and CDNs can reduce the physical distance and number of hops for
some content.

On the other hand, there is a significant issue which has gained a lot of press in technical circles in the
past few years that is pointing to the fact that a lot of network elements have more buffering memory in
them than is really good for application performance. The term "buffer bloat" has been coined to describe
this.

1.3 "BUFFERBLOAT"

Every piece of network equipment has to have some amount of buffering in order to handle bursts of
packets on an ingress link, and then to play them out on an egress link. It's particularly important in cases
where there is a mismatch between the rate into the device and the rate out. For example, imagine a
switch with a GigE ingress link and a 100 Mbps egress link. Even if the average ingress rate is 100 Mbps,
the ingress link will often provide that traffic in bursts of packets at 1 Gbps. Buffering is pretty important
to make sure that the switch can accept those bursts and play them out on the 100 Mbps link. From the
perspective of egress link utilization, more buffering is better, since it reduces the chance that the egress
link will go idle. For bulk TCP traffic (file transfers), user experience is driven by how quickly the file
transfer can complete, which is directly related to how effectively the protocol can utilize the network
links, again supporting the view that more buffering is better.

But the downside to large buffers is that they result in excessive latency. While this isn't an issue for the
bulk file transfers, it is clearly an issue for other traffic, and the issue is exacerbated by the TCP itself.
The majority of TCP implementations use loss-based congestion control, which means the TCP ramps up
its congestion window (effectively ramps up its sending rate) until it sees packet loss, then it cuts its
congestion window in half, and then starts ramping back up again until it sees the next packet loss, and
that saw-tooth continues. In a lot of networks, especially wired networks, packet loss doesn't come from
noise on the wire. It comes from buffers being full, and when a packet arrives at a full buffer it has to be
discarded. This is how the TCP automatically adjusts its transmission rate to match the available capacity
of the bottleneck link.

The result of this saw-tooth behavior being driven by buffer exhaustion is that the buffer at the head of the
bottleneck link is going to saw-tooth between partially full and totally full. Depending on the particular
flavor of TCP congestion control (Reno, New Reno, CUBIC, etc.) the portion of time spent in the full (or
nearly full) state will vary, and if there are multiple TCP sessions sharing that bottleneck link, then the
average buffer occupancy will increase. Furthermore, if the buffer is oversized, its average occupancy
will be higher as well.

In DOCSIS networks, the cable modem is generally at the head of the bottleneck link for upstream traffic.
Historically, and still typically today, CMs have had a much bigger buffer than is needed to keep TCP
working smoothly.

The two of those factors together – the modem being at the head of the bottleneck link and having an
oversized buffer – plus the fact that TCP is going to try to keep that buffer full, results in high upstream

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 5 5 5

latency through the modem whenever there is an upstream TCP session. The terms that have been coined
to describe this phenomenon are "bufferbloat" or "latency under load".

The result of bufferbloat is that applications other than upstream TCP suffer. Even though the other
applications might be low bandwidth, and TCP will back off to accommodate them on the link, their
packets arrive to a full or nearly full buffer that may take hundreds of milliseconds or even seconds to
play out. This can make web browsing perform poorly and make VoIP, video chat, or online games
unusable. In addition, this could potentially affect downstream TCP performance as well, since the
upstream ACKs would experience similar latencies. However, this effect was identified some time ago,
and as a result all cable modems have for years supported some kind of ACK prioritization scheme that
allows upstream TCP ACKs to bypass the large queue.

One reason this situation has persisted in DOCSIS cable modems is that since DOCSIS 1.1, modems have
supported multiple service flows. The presumption on the part of modem developers has been that if
operators are concerned about latency for certain traffic flows, they can create a separate service flow to
carry that traffic. Unfortunately this isn't a feasible solution in the vast majority of cases.

1.4 MEASURING BUFFERBLOAT

There have been a number of efforts in recent years to characterize buffer bloat. Figure 3 comes from a
paper [Dischinger] that really kicked off a lot of the interest in solving this problem. It shows the amount
of buffering delay or queuing delay in DSL and cable networks, circa 2007. It shows delays on the order
of seconds on the upstream for cable modems. Consider again the 14x multiplier effect described earlier.
This amount of buffering would result in page load delays on the order of 30 seconds to a minute.

Figure 3 - Buffering Delay in Residential Broadband Networks

Figure 3 does show that this problem isn't limited to cable modems. CMTSs appear to also have a
significant amount of buffering, and DSL systems suffer as well.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Number of packets

Fr
ac

tio
n

of
 h

os
ts

CableDSL

(a) Maximum number of packets per burst

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Jitter (milliseconds)

Fr
ac

tio
n

of
 h

os
ts

DSL

Cable

(b) Lower bound estimate of concatenation jitter

Figure 12: Cable links show high RTT variation: In addition to a high level of basic jitter, cable modems can send small
packets in a single burst and thus cause additional jitter.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500
Queue length (milliseconds)

Fr
ac

tio
n

of
 h

os
ts BellSouth

SWBell
Qwest

BT Broadband

PacBell

Ameritech

(a) DSL (downstream)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500
Queue length (milliseconds)

Fr
ac

tio
n

of
 h

os
ts Road Runner

Comcast

Chello

Rogers Charter

(b) Cable (downstream)

0

0.2

0.4

0.6

0.8

1

0 500 1,000 1,500 2,000 2,500
Queue length (milliseconds)

Fr
ac

tio
n

of
 h

os
ts

BellSouth

SWBell

Qwest

BT Broadband

PacBell

Ameritech

(c) DSL (upstream)

0

0.2

0.4

0.6

0.8

1

0 1,000 2,000 3,000 4,000 5,000
Queue length (milliseconds)

Fr
ac

tio
n

of
 h

os
ts

Road Runner

Comcast

Chello

Rogers

Charter

(d) Cable (upstream)

Figure 13: Downstream and upstream queue length in milliseconds: Some downstream queue lengths follow the
recommendation for voice calls (150 ms), but most are significantly longer. The upstream queue length can be massive,
especially for cable links.

4.2.3 How large are broadband queueing delays?

Sizing router queues is a popular area of research (e.g., [4]).
A common rule of thumb (attributed to [49]) suggests that
router queues’ lengths should be equal to the RTT of an av-
erage flow through the link. Larger queues lead to needlessly
high queueing delays in the network. We investigated how
well this conventional wisdom holds in broadband environ-
ments.

We measured queue lengths in milliseconds by calculating
the RTT variation of our probe streams’ packets. To esti-
mate downstream queue lengths, we used large-TCP flood
probe trains, which saturate the downstream but not the up-

stream link. We calculated the difference between the mini-
mum RTT and the 95th percentile highest RTT. To estimate
upstream queue lengths, we first measured the difference
between the minimum RTT and the 95th percentile high-
est RTTs of large-ICMP flood probe trains. This difference
corresponds to the sum of downstream and upstream queue
lengths. We then subtracted the estimate of the downstream
queue length to obtain the length of the upstream queue.

Figures 13(a) and 13(b) show the cumulative distributions
of downstream queue lengths for different cable and DSL
providers. Across most cable ISPs and two DSL ISPs (Pac-
Bell and SWBell), the curves show a sharp rise at 130 ms.
This value is consistent with that recommended by the ITU

Active Queue Management Algorithms for DOCSIS 3.0

6 CableLabs®

Another data point comes from the SamKnows testing that has been going on in the US for the past
couple of years. SamKnows conducts tests (and the FCC produces reports) on latency under load as well.
Figure 4 is a graphic from a paper [Sundaresan], which analyzed the data that was published in the 2011
version of the Measuring Broadband America report from the FCC.

Figure 4 - FCC/SamKnows Data on Latency Under Load

This shows the ratio of "latency under load" to baseline latency for both upstream and downstream. Each
bar shows the mean value of that ratio and the top of the whisker is the highest ratio that they saw in their
testing.

So again, it's not a problem that's specific to cable, AT&T, Qwest, Verizon are showing up here as well.
And again, it seems to be a bigger problem on the upload side, where we see ratios of 40 to 80 times as
much as latency under loaded conditions than you see in the nominal or baseline condition when there's
effectively no TCP running to clog up the upstream buffer in the modem.

Additionally, the ICSI Netalyzer test can measure upstream and downstream buffering. Below are a few
data points collected in March/April 2013 using Netalyzer by Matt Tooley of NCTA. In Table 1, speeds
are reported in kbps, and latencies are in ms. The Netalyzer tool does not measure speeds in excess of 20
Mbps, so a number of the data points are shown as >20000 kbps.

on latency and loss. Finally we explore exploiting shaping mecha-
nisms such as PowerBoost might help mitigate the problem.

Problem: Oversized buffers. Buffers on DSL and cable modems
are too large. Buffers do perform an important role: they absorb
bursty traffic and enable smooth outflow at the configured rate [24].
Buffering only affects latency during periods when the access link
is loaded, but during such periods, packets can see substantial de-
lays as they queue up in the buffer. The capacity of the uplink also
affects the latency introduced by buffering. Given a fixed buffer
size, queuing delay will be lower for access links with higher ca-
pacities because the draining rate for such buffers is higher. We
study the effect of buffering on access links by measuring latency
when the access link is saturated, under the assumption that the last-
mile is the bottleneck. We also present a simple model for modem
buffering and use emulation to verify its accuracy.

How widespread are oversized buffers? Figure 13 shows the
average ratios of latency under load to baseline latency for each
user across different ISPs for the SamKnows data. The histogram
shows the latencies when the uplink and the downlink are saturated
separately. This figure confirms that oversized buffers affect users
across all ISPs, though in differing intensity. The factor of increase
when the uplink is saturated is much higher than when the downlink
is saturated. One plausible explanation is that the downlink usually
has more capacity than the uplink, so buffering on the ISP side is
lower. The home network (at least 10 Mbits/s) is also probably bet-
ter provisioned than the downlink, so there is minimal buffering in
the modem for downstream traffic. The high variability in the la-
tency under load can be partly explained by the variety in service
plans; for instance, AT&T offers plans ranging from 768 Kbits/s to
6 Mbits/s for DSL and up to 18 Mbits/s for UVerse and from 128
Kbits/s to more than 1 Mbit/s for upstream. In contrast, Comcast
offers fewer service plans, which makes it easier to design a device
that works well for all service plans.

How does modem buffering affect latency under load? To study
the effects of modem buffers on latency under load, we conduct
tests on AT&T and Comcast modems using BISMark. We ran tests
on the best AT&T DSL (6 Mbits/s down; 512 Kbits/s up) and Com-
cast (12.5 Mbits/s down; 2 Mbits/s up) plans. We perform the fol-

Figure 13: Latency under load: the factor by which baseline latency
goes up when the upstream or the downstream is busy. The high
ratios translate to significant real latencies, often in the order of
seconds. (SamKnows)

lowing experiment: we start ICMP ping (at the rate of 10 pkts/s
for Comcast and 2 pkts/s for AT&T as some modems were block-
ing higher rates) to the last mile hop. After 30 seconds, we flood the
uplink (at 1 Mbits/s for AT&T and at 10 Mbits/s for Comcast us-
ing iperf UDP). After 60 seconds, we stop iperf, but let ping
continue for another 30 seconds. The ping measurements 30 sec-

(a) Empirical measurements of modem buffering. Different modems
have different buffer sizes, leading to wide disparities in observed
latencies when the upstream link is busy. (BISMark)

(b) Emulated modems with token bucket filters. We see similar la-
tency progression. Emulated buffer sizes have minimal effect on
throughput.

Figure 14: Buffering in AT&T modems. There is little benefit to
the buffering seen in most modems.

onds on either side of the iperf test establishes baseline latency.
The Motorola and the 2Wire modems were brand new, while the
Westell modem is about 5 years old, and was in place at the home
where we conducted the experiment. We also saw the same Westell
modem in two other homes in the BISMark deployment.

Figure 14a shows the latency under load for the three modems.
In all cases, the latency increases dramatically at the start of the
flooding and plateaus when the buffer is saturated. The delay expe-
rienced by packets at this stage indicates the size of the buffer, since
we know the uplink draining rate. Surprisingly, we see more than
an order of magnitude of difference between modems. The 2Wire
modem has the lowest worst case latency, of 800 ms. Motorola’s is
about 1600 ms, while the Westell has a worst case latency of more
than 10 seconds. Because modems are usually the same across ser-
vice plans, we expect that this problem may be even worse for users
with slower plans.

To model the effects of modem buffering, we emulated this setup
in Emulab [13] with a 2 end-host, 1-router graph. We configured
a token bucket filter using tc. We compute the buffer size to
be: 512 Kbits/s⇥max(latency of modem), which yields a size of
640 Kbytes for Westell, 100 Kbytes for Motorola, and 55 Kbytes
for 2Wire. This simple setup almost perfectly captures the la-
tency profile that the actual modems exhibit. Figure 14b shows
the emulated latencies. Interestingly, we observed little difference
in throughput for the three buffer sizes. We also emulated other
buffer sizes. For a 512 Kbits/s uplink, we observed that the modem
buffers exceeding 20 KBytes do little for throughput, but cause a
linear increase in latency under load. Thus, the buffer sizes in all
three modems are too large for the uplink.

How does PowerBoost traffic shaping affect latency under
load? To understand latency under load for cable users, we study
the Comcast users from BISMark. All of the modems we study
have buffers that induce less than one second of delay, but these
users see surprising latency under load profiles due to traffic shap-

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 7 7 7

Table 1 - Snapshot of Netalyzer Tests of Speed and Buffering Latency

ISP(Technology(

Down(Up(

Speed(Latency(Speed(Latency(
Comcast! DOCSIS! >20000! 710! 4100! 480!

Comcast! DOCSIS! >20000! 720! 6000! 240!

Cox! DOCSIS! >20000! 710! 4000! 480!

Rogers! DOCSIS! >20000! 89! 1900! 270!

ATT! UAVerse! 5600! 83! 1000! 1400!

ATT! UAVerse! 5600! 59! 1000! 1400!

ATT! DSL! 1200! 3800! 330! 6700!

Verizon! FIOS! 8000! 270! 7000! 89!

Verizon! FIOS! 12000! 240! 9000! 200!

Comcast! EPON! >20000! 56! >20000! 99!

ATT! 3G! 2000! 850! 1000! 1700!

Clearwire! WiMAX! 8000! 1700! 340! 1700!

!

This recent data seems to indicate that upstream latencies in DOCSIS may be coming down relative to
what they were in 2007. One probable explanation is that the amount of buffering (measured in packets or
bytes) hasn't changed, but as upstream data rates have risen over the intervening 6 years, the latency
caused by that buffer has dropped. Still, there is perhaps 5x or 10x as much upstream buffering as is
needed at these speeds. Also notable is that the downstream buffering latency in DOCSIS is actually
higher than upstream for all except Rogers.

All of these reports point to what happens if you set up a specific test case that is designed to uncover this
issue. The next question is, how often does it really happen in practice for residential cable customers?
How often are they seeing the effect of bufferbloat? A researcher from ICSI did a study to try to identify
that. It's not a direct measure, but rather an estimate of how much buffering latency is seen in the real
world by users doing real world activities. The paper [Allman] goes into a lot of detail on the
methodology they used, but the main result is provided in Figure 5 below.

Active Queue Management Algorithms for DOCSIS 3.0

8 CableLabs®

Figure 5 - Estimated Cumulative Probabil i ty of Buffering Latency

This plot separates residential customers "Res." from non-residential customers "Non-Res.", but it
contains a random sampling of hosts on the Internet, so each curve contains a mix of different network
technologies.

But this is a conservative, and somewhat flawed estimate. It's effectively a lower bound on what the
buffering latency was, packet by packet. However, the measurements were collected only using packets
from long duration downstream TCP sessions and their upstream ACKs. Due to the TCP ACK
prioritization schemes mentioned previously, these measurements are invalid as a predictor for the impact
that buffer bloat has on upstream traffic (other than TCP ACKs).

Flawed as it is, they show a median value for residential customers of about 50 milliseconds of buffering
latency, and a 95th percentile of about 250 milliseconds of latency. The author surprisingly concludes that
this isn't too bad. But, these values are sufficient to significantly degrade many interactive applications,
and would result in multi-second delays in page load time.

To get around the upstream ACK flaw in the ICSI methodology and to isolate the test to a cable modem
user, we performed a weeklong network capture on the link between a single residential cable modem and
the customer's home router. Other than that, we followed the ICSI methodology.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

C
D
F

RTT (sec)

Peer Min. RTT per sample
All RTT Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

C
D
F

RTT (sec)

Peer Min. RTT per sample
All RTT Samples

Figure 1: Distributions of minimum RTT sample to each remote peer for each RTT sample and all RTTs
samples taken for non-residential (left) and residential (right) peers.

is generally larger than the corresponding distribution for
non-residential peers.
The second observation from figure 1 is that 99.6% of

residential RTT samples and 98.3% of non-residential RTT
samples are less than one second. Previous measurements—
both wide-scale [16] and anecdotal [10]—have illustrated
that buffers are often deep enough to make RTTs of more
than one second possible. However, we find that RTTs above
one second are rare in normal traffic. A similar empiri-
cal result is shown in [21] as part of the case for setting
TCP’s initial retransmission timeout to 1 second. This re-
sult highlights the importance of (i) careful empirical study
in identifying and understanding the scope of problems and
(ii) carefully understanding the lessons from well-conducted
previous experiments.
Even though we find RTTs generally less than one sec-

ond in our dataset, our third observation is that buffering
is happening to some extent. In both plots in figure 1 the
“all samples” distribution shows longer RTTs than the peer
minimum distribution. This indicates that in general TCP
segments are encountering some queuing delay through the
network and hence take longer than the baseline would sug-
gest. An exception to this is non-residential hosts that are
within 10 msec of the CCZ hosts. In this case our expec-
tation is that any difference with the minimum does not
necessarily reflect queuing, but at these time scales could be
caused by myriad small issues. While our results show queu-
ing does happen with in the network—as we would expect
since queues are in place for a reason—Whether this consti-
tutes “bloat” is a subjective judgment. All we conclude is
that we do not find queues that impose the seconds of delay
often touted as the hallmark of bufferbloat in our dataset.
Our final observation from figure 1 is that the amount of

buffering is larger for residential peers than for non-residential
peers. One reason for this could be that residential users
generally have slower links than non-residential hosts and
therefore draining a queue—which the FTTH-connected sen-
der could readily fill—naturally takes longer. Additionally,
residential users are both geographically and delay-wise fur-
ther from the CCZ hosts. Therefore, traffic to residential
peers may have a natural tendency to accumulate more delay
as it passes through more routers. Finally, home network-
ing gear may simply have a higher propensity to over-buffer
as suggested in [16]. Without additional ancillary data we

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1

C
D
F

Samp. - Min. (sec)

Non-Res.
Res.

Figure 2: Distribution of each RTT sample minus
minimum RTT to the given remote peer.

cannot ascribe a reason to the larger buffering to residential
peers even though it is unmistakably present.

While figure 1 shows buffering does indeed happen, we
now assess the magnitude of the phenomenon in our dataset.
Figure 2 shows the distribution of difference between each
sample in our dataset and the minimum RTT for the given
host pair (within each trace). The median increase in RTT
is just over 1 msec for non-residential peers and roughly
45 msec for residential peers. At the 99th percentile the
buffering represents 450 msec and 976 msec of added delay
for non-residential and residential peers, respectively. In
other words, fewer than 1% of the packets experience an
RTT increase of more than 1 second.

Finally, we turn our attention to the buffering patterns we
observe. First, we wish to gain an understanding of whether
RTTs are generally increasing or decreasing across a pair of
hosts in a given trace. We therefore count the number of
times the RTT increases (decreases) across subsequent RTT
samples for each host pair. In figure 3 (solid lines) we plot
the ratio of the count of RTT increases to the count of RTT
decreases for non-residential (top) and residential (bottom)
peers. A ratio greater than one indicates the RTT increases
more times than it decreases, with a ratio of less than one
indicating the opposite. The plots show that in over 90%
of the cases the host pair has either more RTT increases

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 9 9 9

Figure 6 - CDF of Estimated Round-trip Buffering Delay

The plot shows that this customer experienced buffering latency greater than 50 ms about 25% of the
time, and greater than 100 ms about 6% of the time.

1.5 SOLUTIONS?

There are several potential solutions to this problem.

One solution is to fix TCP, meaning move away from the loss based congestion control algorithm and
instead use delay rather than loss. This has been a topic of research for some time, and is in fact
implemented in a couple of important cases. One is the LEDBAT congestion avoidance that is used in the
uTP BitTorrent protocol. The other is the Compound TCP implementation that is supported in Windows
(not enabled by default). However, in many situations, when a loss-based congestion control algorithm
and a delay-based algorithm share a bottleneck link, the delay-based algorithm backs off before the loss-
based algorithm. In the case of BitTorrent/uTP/LEDBAT that is desirable, but for general-purpose TCP
traffic it isn't. There are a lot of TCP endpoints out there that may not be updated any time soon, or may
never be updated, so from a practical perspective there is a disincentive for any individual device to
switch to delay-based congestion control.

Another solution is to tune the buffers. For cable modems, that means setting the upstream buffers to be a
more appropriate size that minimizes the impact that a full buffer will have on interactive applications,
but doesn't make it so small that it harms TCP performance. This solution is available in the DOCSIS 3.0
Buffer Control feature.

A third solution is to deploy quality of service configurations that segregate latency-sensitive traffic from
bulk TCP data. This solution is available in all DOCSIS modems since DOCSIS 1.1. This solution

10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF of Estimated Round−Trip Buffering Delay

Estimated Round−Trip Buffering Delay (seconds)

Active Queue Management Algorithms for DOCSIS 3.0

10 CableLabs®

presents several challenges. One is that it involves developing classifiers that can discriminate between
latency-sensitive and non-latency-sensitive traffic. Doing so in a manner that is accurate, reliable, and that
would be perceived as "network neutral" is a significant challenge. A second challenge is that rate
shaping as defined in DOCSIS does not provide aggregate service limits. In other words, if the operator
were to configure two service flows for each user, they would not be able to limit the total traffic rate for
the combination of the two service flows. Instead they would have to separately limit each service flow.
This

A fourth solution is active queue management. Active queue managers make packet drop decisions based
on criteria other than "is the buffer full or not". Their goal is to send TCP the signal to slow down before
the buffer is completely full. Thus, the device can support enough buffering so that it can absorb bursts of
packets on the ingress, but doesn't let a standing queue build up. This has been an area of research for
many years, but in the past year several new algorithms have been proposed that look very promising.

2 ACTIVE QUEUE MANAGEMENT ALGORITHMS

We have studied the performance of three new active queue management algorithms; the first is called
control delay, or CoDel; the second is a variant of CoDel, called Stochastic Flow Queue CoDel, and the
third is called Proportional Integral Enhanced, or PIE.

2.1 CODEL

CoDel was first published in May of 2012 by Kathy Nichols and Van Jacobson [Nichols]. CoDel is
described as a "knobless" active queue management algorithm, in that there are no parameters that need to
be tuned based on the network conditions. There are, in fact, a couple of parameters built into CoDel that
appear to be candidates for tuning, but the authors claim that the default settings work very well for a
large class of conditions. In our experiments, we needed to modify the values in order for them to work
well with the DOCSIS 3.0 MAC.

CoDel looks at the actual queuing latency of packets in the device. To do that, it timestamps each packet
on ingress. Then when it de-queues the packet on the egress side, it compares the current time to the
timestamp in order to calculate the queuing latency (or "sojourn time") for the packet. It then does some
fairly simple decision operations based on the sojourn time. First, it compares the sojourn time to a
"target" (5 ms in the original definition of CoDel). If the sojourn time is below target, then the packet is
simply forwarded. If the sojourn time crosses above the target, the algorithm sets a next-drop-time equal
to one "interval" in the future (100 ms in the original definition of CoDel), and the packet is forwarded.
As more packets are dequeued, CoDel continues to track sojourn time, and if it ever falls below target, the
next-drop-time is cleared.

However, if the next-drop-time arrives (meaning the sojourn time has been above target for one interval),
CoDel drops the next packet from the head of the queue and schedules a new next-drop-time equal to
interval/sqrt(2). If again the next-drop-time is reached, the third next-drop-time is scheduled at
interval/sqrt(3), and the process continues with the drops becoming more closely spaced following the
interval/sqrt(N) function (which equates to a linear increase in drop rate over time).

The result is that it can allow a queue to build up, and the latency through the device to be reasonably
high, for short periods of time as long as at least every interval the queue is drained below the target
latency. As such, the algorithm accommodates bursty traffic, without triggering packet loss. However, if a
standing queue builds up (lasting for an interval or more), that's when CoDel enters the dropping state,
and starts trying to send the signal to TCP. CoDel starts with a pretty low drop rate, basically one packet

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 11 11 11

drop every interval, and ramps up the drop rate linearly as long as the sojourn time remains above the
target value. Then, as soon as it drops below target, CoDel stops dropping packets. Using head-drop
rather than tail-drop additionally results in the loss signal reaching the TCP sender sooner, which helps
get the queue-depth under control quickly.

The diagram in Figure 7 illustrates the behavior of the CoDel algorithm conceptually. The actual
implementation more closely follows the description above, but this illustration is intended to describe the
behavior. In the figure, "local min" refers to the minimum sojourn time seen in the current interval.

Figure 7 - Simplif ied CoDel Algorithm Behavior

2.1.1 CODEL IN DOCSIS 3.0

To implement CoDel in the DOCSIS 3.0 modem simulator, we measured sojourn time as the total time
spent in queue from ingress, until a grant arrives and the packet is able to be transmitted (or begin
transmission in the case of a fragmented packet). As a result we need to consider the fact that packets will
experience a MAC latency of at least one request-grant loop, even if the queue itself is small. Since
CoDel uses head-drop, there actually is the possibility that a packet could experience a MAC latency of
less than one request-grant loop, but this will only be as a direct result of a prior packet being dropped,
making way for a newer packet to be forwarded in its place. Since we measure sojourn time such that it
includes this MAC latency, we simply increased the value for target (to 10 ms in our experiments) such
that a packet arriving to an empty queue would be assured (absent RF congestion) that it would have a
sojourn time less than the target value.

2.2 SFQ-CODEL

SFQ-CoDel is a combination of two different queue management concepts. One component, CoDel,
would really be referred to as "active queue management", and the other component is stochastic flow
queuing. These two concepts were first brought together by Eric Dumazet in an implementation in the
Linux kernel in July 2012, and later ported into the OpenWRT router code base by Dave Täht, where in

n

y

y

n
local min > target

delay?

Schedule next time to
drop : Td = now +
interval/sqrt(count)

Drop current packet
Increment count

Dequeue next packet

now >= Td?

Reset count

Forward packet

Active Queue Management Algorithms for DOCSIS 3.0

12 CableLabs®

both cases it is referred to as "fq-codel" (flow-queue CoDel). The ns2 implementation by Kathleen
Nichols bears the name SFQ-CoDel1.

Figure 8, below, is an illustration of the SFQ concept that shows packets arriving into the network device
on the left, and then exiting on the right.

Figure 8 - Stochastic Flow Queuing

The diagram in Figure 8 bears some similarities to the DOCSIS quality of service functionality. There is a
set of different "flows" where incoming packets get queued, and a function that looks at each incoming
packet and maps it into one of the different flows. The flows then get multiplexed together on the wire on
the upstream. But, that's where the similarity ends. In the context of a DOCSIS modem, this SFQ
functionality would all be happening within a single DOCSIS Service Flow. The separation of traffic is
not done via a configured classification function. Rather, it's done via a hash function, which utilizes 3 or
5 elements in the packet header: source IP, destination IP, protocol type, and then source port and
destination port for UDP and TCP packets. Effectively, all the packets for a given connection between a
particular source and destination will get hashed into the same sub-flow, and traffic for other connections
will get hashed into other sub-flows.

However, there is a fixed number of sub-flows, so there is the potential for hash collisions, where two
different flows get mapped to the same sub-flow. But if the number of sub-flows is greater than the
number of simultaneous connections going through the device, there is a good chance that the different
connections will be separated onto different sub-flows. From this perspective, having more sub-flow
queues provides an advantage in that it gives a lower probability of hash-collisions. Since the sub-flows
share a single pool of buffering memory, the only memory overhead that is dependent on the number of
sub-flows is a small amount of per-sub-flow state.

Servicing these sub-flow queues on the egress side is done via a round-robin mechanism (either
packet-based or byte-based) that aims to give each "active" sub-flow an equal share of the link bandwidth
(either from a packet-per-second or bit-per-second perspective).

The result of this arrangement is that, when there are multiple concurrent connections, the bulk TCP
connections get hashed into queues that are separate from the latency-sensitive connections. So, even if
!!!
1 In initial implementations of SFQ-CoDel there were some differences between it and fq-codel. The most significant differences
were the following: 1) The fq-codel implementation utilized a byte-based "deficit round-robin" approach, while SFQ-CoDel used a
packet-based round-robin, 2) fq-codel included a capability to discard packets from the "largest" sub-flow upon exhaustion of queue
memory. CableLabs has worked with Kathleen Nichols to extend SFQ-CoDel so that it now supports (2), and can be configured to
operate either with byte-based or packet-based round robin.

#

Round-RobinHash
Function

...

Sub-flows

arriving packets outgoing packets

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 13 13 13

each TCP connection creates a buffer backlog, its impact on the latency-sensitive connections is almost
nil. So, a periodic or occasional upstream packet for a VoIP call or a gaming session, or an HTTP GET
from a web page download gets hashed into a different sub-flow from the TCP connection. It goes
effectively to the head of its queue, and then when the round-robin comes around, it gets serviced pretty
quickly.

SFQ-CoDel runs the CoDel active queue manager on top of the SFQ structure. The result is that the bulk
TCP sessions then don't maintain a standing queue. This minimizes the impact of hash-collisions.

2.3 PIE

The third algorithm we've studied is called PIE, proportional integral enhanced [Pan]. This is being
developed by Cisco and was first reported on in the October 2012 IETF meeting. It's based on the theory
of linear feedback control.

The concept is based on some earlier work [Misra] that modeled TCP congestion control behavior as a
linear system. It showed that in certain, fairly specific, situations, long-term TCP sessions can respond to
packet loss probability in a way that is similar to a linear-dynamic system.

Under that assumption, PIE attempts to control the queue depth via linear-feedback control, it monitors
the queue depth, and adjusts drop-probability via linear control-theory mechanisms.

However, in general, most real world traffic isn't a set of long-term bulk TCP sessions. It's made up of
different sessions coming and going, some only sending a few packets, some sending thousands. Some
being rate controlled via the TCP congestion control algorithm, some being limited by the application.
For the fraction of the sessions that are in TCP congestion control, they are all in different states (slow-
start, congestion avoidance, etc.) and there are different TCP algorithms as well (NewReno, cubic, etc.).

The PIE approach addresses this by establishing three operating points for its linear controller, and
switching between them in an attempt to select the mode that results in the best behavior.

The core of the algorithm is that is develops a prediction of the queuing latency for the packet that is
currently at the tail of the queue, based on the current queue depth and an estimate of the egress data rate.
It calculates a latency "error" - the difference between the estimated latency and a reference value, e.g. 5
or 10 milliseconds. It then sets the drop probability as a weighted sum of the latency error and the running
sum of the latency error over time. So, if the latency is significantly greater than (e.g.) 5 ms, and/or has
been greater than 5 ms for some time, then PIE will set a fairly high drop-probability, and if it's below the
reference value and/or has been below for some time, then it will set a low (or zero) drop-probability.
Additionally, rather than performing head-drop, PIE performs tail-drop.

The PIE algorithm may have some advantages from an implementation perspective. First, it does not
require timestamping of ingress packets, and second, tail-drop is generally considered simpler than head-
drop. Additionally, the computations involved in estimating the egress link rate, and in updating the drop
probability are performed periodically, e.g., every 30 ms, so that CPU demands can be moderated (at the
expense of performance) if need be.

Active Queue Management Algorithms for DOCSIS 3.0

14 CableLabs®

3 SIMULATION MODEL

3.1 DOCSIS MODEL UPDATES

The ns-2 simulation model of a DOCSIS 3.0 cable modem and CMTS used in this study is an updated
version of the model described in [White]. The changes are as follows:

• The rate shaping queue (RsQ) and transmit queue (TxQ) have been combined into a single queue
that implements both rate shaping (per the DOCSIS 3.0 specification) and the Request-Grant
DOCSIS 3.0 MAC. While the previous, dual-queue, approach is a potential implementation for
DOCSIS modems, we believe that the single-queue is more realistic, and when AQM is used, the
single-queue approach provides significantly better performance than dual-queue.

• The DropTail implementations of the cable modem queue now limit the queue depth in bytes rather
than in packets. This is a more accurate model of the way that the DOCSIS 3.0 Buffer Control
feature is defined.

• The CMTS provides the CM a grant that is located randomly in the MAP interval (via a uniform
distribution), rather than always occurring at the beginning of the MAP interval. We feel that this is
a more realistic model for grant distribution.

3.2 QUEUE MANAGER CONFIGURATIONS

We utilize the following configurations for the queue managers under study:

• BufferBloat - DropTail queue with a buffer size set to 625000 bytes (equivalent to 1000 ms at the
Max Sustained Rate of 5 Mbps, and 250 ms at the Peak Rate of 20 Mbps). This is intended to
model current modems as deployed in the field today. As noted in section 2.4, there is some
evidence that buffering latencies for current DOCSIS 3.0 modems may be on the order of 240-
480 ms rather than 1000.

• Buffer Control - DropTail queue with a buffer size set to 31250 bytes (equivalent to 50 ms at the
Max Sustained Rate, and 12.5 ms at the Peak Rate). This is intended to model a current DOCSIS
3.0 modem with the buffer control feature enabled, and configured to a target buffering latency of
50 ms.

• CoDel - "target" = 10 ms, "interval" = 150 ms, buffer size 625000 bytes. In this case, the buffer
size was kept the same as the BufferBloat case in order to examine the ability of CoDel to
manage the large buffer of an existing D3.0 modem.

• SFQ-CoDel - 32 sub-flows, byte-based deficit round-robin with 300 byte quantum, buffer size
625000 bytes, "target" = 10 ms, "interval" = 150 ms.

• PIE - delay reference = 5 ms, buffer size 300000 bytes, queue-depth measured in bytes, a=0.25,
b=1.25, update interval 15 ms.

3.3 CONGESTION SCENARIOS

As a result of combining the RsQ and TxQ, it is now meaningful to compare the relative performance of
the buffer management schemes in the presence of upstream RF congestion. So this study includes that
variable. In the previous implementation, RF congestion would only impact the egress rate of the TxQ,
which was always DropTail. Since the buffer management algorithms under study operated only on the

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 15 15 15

RsQ, the result was that there was very little difference in performance between the studied algorithms
during simulations of congested upstreams.

We chose three different RF congestion scenarios.

1. No RF congestion from other DOCSIS modems. In this case, the test modem can achieve its 5
Mbps upstream rate limit and get the full 20 Mbps power boost.

2. Light RF congestion, where the channel capacity varies across 2.5 Mbps, 5 Mbps, 12.5 Mbps, 20
Mbps (average capacity 10 Mbps).

3. Moderate RF congestion, where the channel capacity varies across 1.7 Mbps, 3.3 Mbps, 5 Mbps,
12.5 Mbps (average capacity 5.625 Mbps).

In the light-congestion and moderate-congestion cases, the amount of available capacity in the channel
varies over time. In both cases, the channel cycles through a set of four different available capacity
numbers in a pattern that repeats every 120s as is shown in Figure 9 and Figure 10 below. This particular
pattern exhaustively covers all 12 possible data rate transitions.

Figure 9 - Light RF Congestion

In the light-congestion case, the average capacity was greater than the user's provisioned data rate of 5
Mbps. Only occasionally, were they limited to a rate below their provisioned rate. Free capacity on the
upstream channel varies across 2.5 Mbps, 5 Mbps, 12.5 Mbps, 20 Mbps (average capacity 10 Mbps)

Active Queue Management Algorithms for DOCSIS 3.0

16 CableLabs®

Figure 10 - Moderate RF Congestion

In the moderate-congestion case, the average capacity is just slightly above that provisioned rate, and for
half the time was below that 5 Mbps rate. Free capacity on the upstream channel varies across 1.7 Mbps,
3.3 Mbps, 5 Mbps, 12.5 Mbps (average capacity 5.625 Mbps).

3.4 DOCSIS SERVICE CONFIGURATION

As in [White], the cable modem is configured with a single best effort upstream service flow with the
following parameters:

• Maximum Sustained Traffic Rate: 5 Mbps

• Maximum Traffic Burst: 10 MB

• Peak Traffic Rate: 20 Mbps

And a single downstream service flow with the following parameters:

• Maximum Sustained Traffic Rate: 20 Mbps

• Maximum Traffic Burst: 10 MB

• Peak Traffic Rate: 50 Mbps

3.5 TOPOLOGY UPDATES

As a result of the changes in the cable modem model, the topology was updated as shown in Figure 13:

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 17 17 17

Figure 11 - Simulator Topology

In this topology, n0 represents the client endpoint (or router), n1 represents the CM, and n2 represents the
CMTS. The remaining nodes represent servers and other network elements.

3.6 TRAFFIC MODEL UPDATES

Updates have been made to the traffic models relative to what was described in [White]. In particular:
there have been two significant changes to the web browsing model, we've added a model of BitTorrent,
and we utilize the VoIP traffic both as a model of a VoIP session and as a model for an online "twitch"
game.

The changes to the web model include the use of a log-normally distributed set of object sizes as was
described in Appendix A of [White]. This provides a more realistic model of a web page download.
Additionally, the web model was updated to allow testing using multiple simultaneous clients. Notably,
our web model does not include the DNS lookups which would be present in many real-world page loads.
While the number of DNS lookup packets is extremely small relative to the total number of packets
involved in loading a page, they are very sensitive to packet loss. The retry timeout for DNS clients is
commonly 5 seconds, so a single DNS packet loss would increase the page load time by approximately
that amount.

The BitTorrent model uses the linux tcp-ledbat implementation from [Rossi] and described in
[LEDBAT]. For our model of a BitTorrent uploader, we chose to configure 32 simultaneous upload
connections and set the size of each upload "piece" at 256,000 bytes.

The VoIP traffic is unchanged from [White] (G.711 voip model, 87.2 kbps, 218 byte UDP packets at 50
pps). In addition to estimating the VoIP MOS as described in [White], we also report latency and loss
statistics so that this traffic can be viewed as representing an online twitch game, and an understanding of
the impact to gaming applications can be reached.

n0 n1 n2 n3

n4

n5

n7

n8

n9

n10

Selected Queue Mgr w/
DOCSIS Token Bucket and

RF Congestion Model
1ms delay

Buffer Size per Test Plan

DropTail w/ DOCSIS
Token Bucket

1ms delay
Buffer Size = 250 kB

FTP Server

VoIP endpoint

HTTP 1

HTTP 2

HTTP 3

HTTP 4

1 Gbps
20ms

1 Gbps
9ms/9ms

1 Gbps
14ms/14ms

1 Gbps
24ms/24ms

1 Gbps
49ms/49ms

1 Gbps
9ms/9ms

1Gbps
0ms

n6

1 Gbps
0ms

CBR endpoint

1Gbps
0ms

Active Queue Management Algorithms for DOCSIS 3.0

18 CableLabs®

3.7 TRAFFIC SCENARIOS

We tested 17 different user traffic scenarios that comprise different mixes of the four applications:

• VoIP/Gaming

• Web browsing

• File upload (either FTP or BitTorrent)

• Constant bit rate UDP traffic

The 17 scenarios lean toward more active use of the upstream connection than would be considered
"average", and this is by design. Cable modems in residential service may have fairly low average
upstream utilization, but it is generally marked by sporadic periods of activity interspersed among idle
periods. It is during the periods of activity where buffer management has an impact on performance. It is
also during these periods that the user may be most likely to be aware of any impact on user experience.

The 17 scenarios are grouped into three groups: light, moderate and heavy traffic. The light traffic group
consists of seven traffic scenarios, the moderate traffic group contains 4 scenarios, and the heavy traffic
group contains 6 scenarios. These scenarios are detailed in Table 2 below.

In Table 2, "VoIPs" indicates the number of simultaneous 87.2kbps UDP streams (representing both a
VoIP application and an online game), "Webs" indicates the number of simultaneous web users (repeated
downloads of a 700 kB page as described in Appendix A of [White]), "CBR" indicates presence or
absence of a single 1 Mbps UDP flow, "FTPs" indicates the number of simultaneous bulk TCP uploads,
and are detailed in the table.

Table 2 - Traff ic Scenarios

Test!

Case! VoIPs! Webs!

CBR!

traffic!

(Mbps)!

File!Upload!Traffic!

Traffic/Load!

"Group"!FTPs!

RTT!

(ms)! FTP!detail! TCP!

x01! 1! 1! 0! 0! n/a! n/a! n/a! L!

x02! 1! 1! 0! 1! 20! continuous!file!tx! linuxAcubic! L!

x03! 1! 1! 0! 1! 100! continuous!file!tx! linuxAcubic! L!

x04! 1! 1! 0! 5! 20! repeating!5MB!file!tx! linuxAcubic! M!

x05! 1! 1! 0! 5! 100! repeating!5MB!file!tx! linuxAcubic! M!

x06! 1! 1! 1! 5! 20! repeating!5MB!file!tx! linuxAcubic! M!

x07! 1! 1! 1! 5! 100! repeating!5MB!file!tx! linuxAcubic! M!

x08! 1! 1! 0! 1! 20! bursty!18.75MB!file!tx! tcpAreno! L!

x09! 1! 1! 0! 1! 100! bursty!18.75MB!file!tx! tcpAreno! L!

x10! 4! 4! 0! 1! 20! continuous!file!tx! linuxAcubic! L!

x11! 4! 4! 0! 1! 100! continuous!file!tx! linuxAcubic! L!

x12! 4! 4! 0! 5! 20! repeating!5MB!file!tx! linuxAcubic! H!

x13! 4! 4! 0! 5! 100! repeating!5MB!file!tx! linuxAcubic! H!

x14! 4! 4! 0! 10! 20! repeating!250KB!file!tx! linuxAcubic! H!

x15! 4! 4! 0! 10! 100! repeating!250KB!file!tx! linuxAcubic! H!

x16! 4! 1! 0! 32! 20! repeating!250KB!file!tx! ledbat! H!

x17! 4! 1! 0! 32! 100! repeating!250KB!file!tx! ledbat! H!

!

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 19 19 19

Note that the traffic grouping (L,M,H) is based on the number of simultaneous file transfer sessions and
the number of simultaneous web users. Cases where there is 0 or 1 file transfer form the "light" traffic
group. Cases where there 5 are file transfers and only a single web user form the "moderate" traffic group.
The remaining cases (5 file transfers and multiple web users; or >5 file transfers) form the "heavy" traffic
group. As traffic increases from light to heavy, it is expected that the VoIP/Gaming traffic will experience
decreasing user experience. The same may not be precisely true for the web page load time, since in some
of the "heavy" traffic cases the web traffic constitutes a significant portion of that traffic load.

!

3.8 APPLICATION METRICS

As noted above, different applications are impacted differently by network transport behaviors. As a
result, we look at different metrics to gauge the user experience for each application.

For VoIP applications, we utilize the same Mean Opinion Score (MOS) estimator as described in [White],
for gaming applications we track statistics on packet latency and loss, for web browsing we track page
load time statistics, and for file uploads we track long term average good-put.

Additionally, to better understand short timescale TCP performance, we initiate single file transfers, and
monitor throughput and buffering latency over time (averaging on 100ms intervals).

4 SIMULATION RESULTS

The simulation results presented here are the result of simulating 2 hours of user activity for each data
point. In all of the sections below aside from section 5.4, the simulated scenarios are those described in
Section 4.7. Section 5.4 instead uses a single isolated TCP session.

4.1 GAMING TRAFFIC

4.1.1 GAMING PACKET LATENCY

Figure 12 shows a detailed view of the impact that the various queue management techniques can have on
gaming traffic packet latency across the various test conditions. This figure breaks out the test conditions
as a 3x3 grid of plots, where the rows represent the different RF congestion levels, and the columns
represent the different traffic load groups.

Figure 13 provides a "one-level-up" summary of the results, where each plot represents a row-wise or
column-wise combination of three of the plots from Figure 12. The first column of plots summarizes the
three different RF congestion levels (weighting each traffic load group equally), whereas the second
column summarizes the three different traffic load groups (weighting each RF traffic level equally).

Finally, Figure 14 provides an overall summary of the results (weighting each of the nine conditions from
Figure 12 equally).

All of these plots show the buffering latency for the VoIP/Gaming traffic, including any MAC access
time. The latency values used for generating these plots are measured using a process that rounds each
measurement up to the nearest integer millisecond.

A
ct

iv
e

Q
ue

ue
 M

an
ag

em
en

t
A
lg

or
it
hm

s
fo

r
D

O
C

S
IS

 3
.0

20

C
a
b
le

La
b

s®

F

ig
u

re
 1

2
-

G
am

in
g

 T
ra

ff
ic

 L
at

en
cy

 D
et

ai
l

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 li
gh

t,
R

F
C

on
ge

st
io

n
=

no
ne

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
C

on
ge

st
io

n
=

no
ne

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
C

on
ge

st
io

n
=

no
ne

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 li
gh

t,
R

F
C

on
ge

st
io

n
=

lig
ht

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
C

on
ge

st
io

n
=

lig
ht

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
C

on
ge

st
io

n
=

lig
ht

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 li
gh

t,
R

F
C

on
ge

st
io

n
=

m
od

er
at

e

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
C

on
ge

st
io

n
=

m
od

er
at

e

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

1m
s

10
m

s
10

0m
s

1s
10

s
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
C

on
ge

st
io

n
=

m
od

er
at

e

Pa
ck

et
 L

at
en

cy

Cumulative Probability

Bu
ffe

rB
lo

at
Bu

ffe
rC

on
tro

l
C

oD
el

SF
Q
−C

oD
el

PI
E

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 21

Figure 13 - Gaming Traff ic Latency vs. RF Congestion

and vs. Traff ic Load

In this view, we see a few notable characteristics.

One notable characteristic is that the two DropTail queue managers (BufferBloat and BufferControl)
experience a worst-case latency that is equivalent to their configured target buffer depth when there is no
RF congestion. However, when RF congestion is present, the buffering latency increases beyond the
targeted limit. This is due to the fact that the effective data rate that the modem is able to achieve during
congestion is less than the provisioned service rate, and that the buffer size is set in terms of bytes (and
doesn't adjust based on congestion). In the light congestion case we see a worst-case latency that is double
the target value, and in the moderate congestion case we see triple the target value, exactly as would be
predicted based on the RF congestion configuration. On the other hand, the three active queue
management algorithms are much less affected by the RF congestion scenarios. This is a result of the fact
that they are each utilize target latency in a way that does not make any a priori assumptions about the
egress data rate. In the case of CoDel and SFQ-CoDel, the latency is measured directly. In the case of
PIE, latency is predicted based on recent history of egress data rate. In these AQM cases, there will be

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = none

Packet Latency

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = light

Packet Latency

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = moderate

Packet Latency

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = light

Packet Latency

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = moderate

Packet Latency
Cu

m
ul

at
ive

 P
ro

ba
bi

lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = heavy

Packet Latency

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

Active Queue Management Algorithms for DOCSIS 3.0

22 CableLabs®

episodes of increased latency that result immediately after the egress rate drops, but the AQM then
recovers and returns the packet latency to the desired amount.

Another notable characteristic is that the DropTail queue managers show buffering latency that is heavily
weighted toward the maximum value, which corroborates the theory that TCP is keeping the buffer full.
However, in the heavy traffic scenario, the BufferBloat curve doesn't exhibit the same behavior. This is a
result of the fact that in these scenarios, much of the bulk file-transfer traffic uses LEDBAT, which will
back off when it senses buffering delays on the order of 100ms.

We also note that all of the "single queue" approaches (i.e., everything except SFQ-CoDel) show a
minimum latency of 5-6 ms (shown as 6 ms due to rounding-up), whereas SFQ-CoDel can provide
latencies as low as 1-2 ms (shown as 2 ms). The 5-6 ms best case for the single queue approach results
from the DOCSIS 3.0 Request-Grant process, where a packet arriving to an empty queue will trigger the
CM to send a Request message during the first MAP interval, and then transmit during a grant occurring
in the third MAP interval. In the SFQ-CoDel case, our implementation does not dequeue packets, or even
iterate the round-robin algorithm, until the grant arrives. As a result, approximately 80% of the time, the
VoIP/Gaming packet sees less than 5ms of buffering latency! This phenomenon is caused by a request
being triggered by a packet for another flow (bulk file transfer or web traffic), and then the VoIP/Gaming
traffic being selected to utilize the resulting grant (thereby delaying the bulk file transfer or web traffic
slightly). This was an unexpected benefit of the SFQ approach.

Finally, we note that while SFQ-CoDel outperforms all other approaches in the majority of cases, the
heavy traffic scenarios have a crossover point where the SFQ-CoDel approach actually performs worse
than CoDel (or PIE). This appears to be the result of competition with a large number of other concurrent
sessions. In these scenarios, there are anywhere from 60 to 110 simultaneous sessions operating, of which
4 are VoIP/Gaming traffic. In the FTP cases the majority of the sessions are web upstream traffic (GETs
and ACKs) which are small packets, but in the BitTorrent cases over half of the sessions are large packet
flows. The most significant degradation in performance occurred in the BitTorrent cases. Given that our
SFQ implementation is configured for 32 sub-flows, it is unlikely that all of the VoIP/Gaming traffic
flows get hashed into their own, dedicated SFQ sub-flows, and some of them undoubtedly get hashed into
a sub-flow with upstream bulk traffic. It is in these cases that the SFQ round robin seems to work against
us. Unfortunately, in our testing, increasing the number of SFQ sub-flows did not improve performance.
This is due to the fact that each upstream VoIP/Gaming flow was 87.2 kbps, or about 1/57 of the full
upstream rate of 5 Mbps. Since the SFQ round robin seeks to give each active sub-flow an equal share of
the link bandwidth, more than 57 active sub-flows would result in the VoIP/Gaming flows being starved
for bandwidth. We tested with different power-of-two counts for sub-flows (e.g. 8, 16, 32, 64, etc.) since
this restriction provides some implementation benefits in the hash calculation, and found that 32 sub-
flows provided the best performance. Notably, 32 is the highest power-of-two that is less than 57, but we
have not explored non-power-of-two sub-flow counts to determine whether better performance would be
achieved with sub-flow counts between 32 and 57.

Further work may uncover a solution for some of these cases. For example, there are some reports that
BitTorrent clients mark their upstream traffic with the CS1 DiffServ code point (denoting "background"
or "scavenger" traffic). If this is widespread, it could be utilized to map all such traffic into a single
dedicated sub-flow (perhaps one that is treated as lower priority).

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 23

Figure 14 - Gaming Traff ic Latency Summary

4.1.2 GAMING PACKET LOSS

The other side of the user experience metric for gaming traffic that we looked at is packet loss. The next 3
figures show the packet-loss performance of the different queue management algorithms across the
different scenarios. The PIE algorithm and the simple DropTail queues show fairly low loss across the
test conditions. The CoDel algorithm returns moderate loss levels across the different scenarios. Finally,
the sfqCoDel algorithm resulted in almost zero packet loss (rates less than 0.01%) in the light and
moderate traffic scenarios, but had significant packet loss in some of the heavy traffic cases.

In the cases with a total of 110 simultaneous flows: 4 VoIP/Gaming flows, 4 web clients (each opening 24
connections), and 10 FTPs, sfqCoDel resulted in approximately 5% packet loss. In the BitTorrent cases
however, sfqCoDel resulted in packet loss rates between 9% and 34%. This is a result of the same
phenomenon that impacted the latency performance.

!

1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gaming Packet Latency Summary (all conditions)

Packet Latency

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

BufferBloat
BufferControl
CoDel
SFQ−CoDel
PIE

Active Queue Management Algorithms for DOCSIS 3.0

24 CableLabs®

Figure 15 - Gaming Packet Loss - Light Traff ic Scenarios

!

Figure 16 - Gaming Packet Loss - Moderate Traff ic Scenarios

0.0%!

0.2%!

0.4%!

0.6%!

0.8%!

1.0%!

1.2%!

1.4%!

1.6%!

1.8%!

Bloat! Buff.Ctrl! CoDel! sfqCoDel! PIE!

no!cong.!

light!cong.!

mod.!cong.!

0%!

2%!

4%!

6%!

8%!

10%!

12%!

Bloat! Buff.Ctrl! CoDel! sfqCoDel! PIE!

no!cong.!

light!cong.!

mod.!cong.!

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 25

Figure 17 - Gaming Packet Loss - Heavy Traff ic Scenarios

Figure 18 - Gaming Packet Loss - All Scenarios

4.1.3 SENSITIVITY OF GAMING APPLICATIONS TO PACKET LATENCY AND LOSS

In assessing the potential impact to user experience for gaming applications, we have looked at two
metrics: latency and loss, with the result being that some queue managers did well against one metric, and
not as well against the other. This is summarized qualitatively in Table 3 below.

0%!

2%!

4%!

6%!

8%!

10%!

12%!

Bloat! Buff.Ctrl! CoDel! sfqCoDel! PIE!

no!cong.!

light!cong.!

mod.!cong.!

0%!

1%!

2%!

3%!

4%!

5%!

6%!

7%!

8%!

9%!

10%!

Bloat! Buff.Ctrl! CoDel! sfqCoDel! PIE!

Light!Traffic!

Moderate!Traffic!

Heavy!Traffic!

Active Queue Management Algorithms for DOCSIS 3.0

26 CableLabs®

Table 3 - Qualitative Summary of Gaming Performance

QUEUE MANAGER LATENCY PERFORMANCE LOSS PERFORMANCE

BufferBloat Extremely poor Very good

Buffer Control Poor Very good

CoDel Good Good

SFQ-CoDel Very good in most conditions
Good in BitTorrent cases

Very good in most conditions
Poor in BitTorrent cases

PIE Good Very Good

This begs the question, what is the relative sensitivity of online games to packet loss versus latency?
Latency appears to have a bigger effect than packet loss, but it almost certainly depends on the game.

Two game types that are likely to be very sensitive to network impairment are first-person-shooter (FPS)
games and cloud-games. In FPS games, the game environment is typically hosted on a server, and each
client receives periodic game-state updates from the server, renders the player's immediate surroundings,
and sends player-state updates back to the server. While the player's surroundings and motion within
those surroundings is handled locally on the player's console, and so would not be directly impacted by
network conditions, the interactions with other players are what determine the outcome of the game.
Since performance in these games can be impacted by a player's reaction-time, it stands to reason that
delays or loss in delivering game or player state could negatively impact game play. Cloud-games, in
contrast, offload all of the rendering functionality to the cloud server, with the server delivering an
audio/video stream to the client, and the client returning controller inputs. As a result, all user interactions
with the game are subjected to the effect of network impairments.

There have been a number of studies of the impact that network impairments have on networked first-
person-shooter (FPS) games. In 2004, [Beigbeder], et al., performed a study of the relative impact of
packet loss and latency for one FPS game, "Unreal Tournament 2003".

Through'numerous'user'studies,'we'find'that'packet'loss'has'no'measurable'affect'on'player'
performance'in'any'user'interaction'category.'Moreover,'users'rarely'even'notice'packet'losses'
even'as'high'as'5%'during'a'typical'network'game.'Latency'has'no'measurable'effect'on'simple,'
straight?'line'or'more'complex'movements.'Shooting,'however,'is'greatly'affected'by'latency'
with'even'modest'(75?100'ms)'amounts'of'latency,'decreasing'accuracy'and'number'of'kills'by'
up'to'50%'over'a'common'Internet'latency'ranges.'While'combinations'of'movement'and'
shooting'somewhat'mask'the'effects'of'latency'on'user'performance,'even'unrestricted'games'
show'trends'which'indicate'that'latency'degrades'user'performance.'This'is'reflected'in'the'
subjective'comments'collected'during'our'user'studies'in'which'loss'rates'went'unnoticed,'but'
latencies'as'low'as'100'ms'were'noticeable'and'latencies'around'200'ms'were'annoying.'
[Beigbeder]'

Around the same time, [Bussiere] studied two FPS games: "Halo 2" and "Quake 3", concluding:

While'for'both'games'the'players'perceived'quality'is'not'much'affected'by'loss,'it'is'very'
surprising'that'Halo'2'players'experience'no'problems'at'high'latencies'whereas'Quake'3'players'
do.''

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 27

And, in a somewhat earlier paper, [Zander] concluded that for "Quake 3":

Delay'has'a'larger'impact'on'the'player’s'perceived'quality'and'performance'than'loss'(for'values'
typical'occurring'in'the'Internet).'

Finally in 2010, [Bredel] & Fidler, also studied "Quake 3". Rather than utilizing human subjects and
collecting subjective perceptions of QoE, they developed a methodology in which two identical "bots"
would play repeated 1-on-1 matches under various network impairment conditions. They concluded that
while both delay and loss had an impact on game performance, delay has a linear impact on scoring
probabilities and rates, and is independent of the direction in which the delay occurs, whereas loss has
less of an impact, but it is important which direction the loss occurred.

Figure 19 - Impact of Latency on Win Probabil i ty for Quake 3

Figure 19 from [Bredel] shows the relationship between delay and win probability for two identical bots
playing against one another in a Quake 3 two-player game. In the experiment, Bot 2 was subjected to
additional delay (either in one direction only or symmetrically) relative to the very low baseline delay
experienced by Bot 1. It is clear to see the degradation in game performance for Bot 2 as delay increases.

In contrast, the impact of loss is dependent on the direction in which loss occurs, with no measurable
impact resulting from loss rates of up to 20% in the server-to-client direction, and up to 50% in the client-
to-server direction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

sc
o
re

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. delay

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 50 100 150 200 250

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

w
in

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. delay

F ig. 6. Statistics of game outcome over network delay. In the considered interval, delay has a linear impact on scoring probabilities and rates. The direction
in which delay occurs has no influence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

sc
o
re

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. jitter

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. jitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

w
in

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c

Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

Bot 1 - model
Bot 2 - model

(c) win probability vs. jitter

F ig. 7. Jitter has almost no influence on scoring probabilities and rates. However, even minor differences may impact the win probability significantly,
especially for long games.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

sc
o

re
 p

ro
b

a
b

ili
ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. loss

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50 60 70

sc
o

ri
n

g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

w
in

-p
ro

b
a

b
ili

ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex

Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. loss

F ig. 8. The impact of loss depends on the direction in which loss occurs. However, loss does not have a measurable impact up to loss probabilities of 0.2.

[18] Y. W. Bernier, “ Latency compensating methods in client/server in-game
protocol design and optimization,” in Proc of G D C , March 2001.

[19] L . Pantel and L . C . Wolf, “ On the impact of delay on real-time
multiplayer games,” in Proc. of N OSSDAV, May 2002.

[20] K .-T. Chen, P. Huang, and C .-L . Lei, “ E ffect of network quality on player
departure behavior in online games,” IE E E Trans. Parallel D istrib. Syst.,
vol. 20, no. 5, 2009.

[21] M . Ries, P. Svoboda, and M . Rupp, “ Empirical study of subjective
quality for massive multiplayer games,” in Proc. of IWSSIP, June 2008.

[22] C . Schaefer, T. Enderes, H . Ritter, and M . Z itterbart, “Subjective quality
assessment for multiplayer real-time games,” in Proc. of NetG ames,
April 2002.

[23] P. Quax, P. Monsieurs, W. Lamotte, D . D . V leeschauwer, and N . De-
grande, “ Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proc. of NetG ames, March 2004.

[24] T. Henderson, “ Latency and user behaviour on a multiplayer game

server,” in Proc of N G C , Nov. 2001.
[25] S. Zander and G . A rmitage, “ Empirically measuring the qos sensitivity

of interactive online game players,” in Proc. of ATNAC , Dec. 2004.
[26] S. Zander, I. Leeder, and G . A rmitage, “A chieving fairness in multiplayer

network games through automated latency balancing,” in Proc. of AC E ,
June 2005.

[27] S. Ross, Introduction to Probability Models. A cademic Press, 2007.
[28] D . K arlis and I. N tzoufras, “A nalysis of sports data by using bivariate

Poisson models,” JSTOR Series D (The Statistician), vol. 52, no. 3, 2003.
[29] Z . Bozakov and M . Bredel, “SSH Launcher - A tool for experiment

automation in distributed environments,” T U Darmstadt, Tech. Rep., July
2008.

[30] D . R. Crew, “Slugbot manual,” http://forum.drc.su/ slugbot-manual-
vt704.html, 2004, [Online accessed 2010-05-14].

[31] A . M . Law, Simulation, Modeling and Analysis. McGraw-H ill, 2007.
[32] A . Papoulis and S. U . Pillai, Probability, Random Variables and Stochas-

tic Processes. McGraw-H ill, 2002.

Active Queue Management Algorithms for DOCSIS 3.0

28 CableLabs®

Figure 20 - Impact of Packet Loss on Win Probabil i ty for Quake 3

Additionally, while we did not explicitly examine jitter in our simulations, [Bredel] concludes that jitter
has less influence on scoring probabilities and rates for Quake 3. It is also notable that there does not
appear to be a trend in the data such that increasing jitter decreases game performance. Instead it appears
that the presence of any amount of jitter causes a more-or-less fixed impairment.

Figure 21 - Impact of Jitter on Win Probabil i ty for Quake 3

While these studies appear to have consistent conclusions for networked FPS games, they have only
studied a few selected game titles, so it is possible that other games are more sensitive to packet loss (or
to jitter).

Nonetheless, if we use the more conservative 20% loss threshold described by [Bredel], we find that
BufferBloat, Buffer Control, and CoDel achieve loss rates less than the threshold in all tested conditions,
while sfqCoDel and PIE only exceed the threshold for the most severe BitTorrent traffic scenario
(regardless of RF congestion). The 50% loss threshold was not exceeded in any of our test cases by any of
the queue managers.

From the latency perspective, there is not a threshold below which user experience is unaffected. This,
coupled with the fact that modem buffering latency is only one component of the overall round-trip time,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

sc
o
re

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. delay

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 50 100 150 200 250

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

w
in

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. delay

F ig. 6. Statistics of game outcome over network delay. In the considered interval, delay has a linear impact on scoring probabilities and rates. The direction
in which delay occurs has no influence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

sc
o
re

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. jitter

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. jitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

w
in

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c

Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

Bot 1 - model
Bot 2 - model

(c) win probability vs. jitter

F ig. 7. Jitter has almost no influence on scoring probabilities and rates. However, even minor differences may impact the win probability significantly,
especially for long games.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

sc
o
re

 p
ro

b
a
b
ili

ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. loss

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50 60 70

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

w
in

-p
ro

b
a
b
ili

ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex

Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. loss

F ig. 8. The impact of loss depends on the direction in which loss occurs. However, loss does not have a measurable impact up to loss probabilities of 0.2.

[18] Y. W. Bernier, “ Latency compensating methods in client/server in-game
protocol design and optimization,” in Proc of G D C , March 2001.

[19] L . Pantel and L . C . Wolf, “ On the impact of delay on real-time
multiplayer games,” in Proc. of N OSSDAV, May 2002.

[20] K .-T. Chen, P. Huang, and C .-L . Lei, “ E ffect of network quality on player
departure behavior in online games,” IE E E Trans. Parallel D istrib. Syst.,
vol. 20, no. 5, 2009.

[21] M . Ries, P. Svoboda, and M . Rupp, “ Empirical study of subjective
quality for massive multiplayer games,” in Proc. of IWSSIP, June 2008.

[22] C . Schaefer, T. Enderes, H . Ritter, and M . Z itterbart, “Subjective quality
assessment for multiplayer real-time games,” in Proc. of NetG ames,
April 2002.

[23] P. Quax, P. Monsieurs, W. Lamotte, D . D . V leeschauwer, and N . De-
grande, “ Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proc. of NetG ames, March 2004.

[24] T. Henderson, “ Latency and user behaviour on a multiplayer game

server,” in Proc of N G C , Nov. 2001.
[25] S. Zander and G . A rmitage, “ Empirically measuring the qos sensitivity

of interactive online game players,” in Proc. of ATNAC , Dec. 2004.
[26] S. Zander, I. Leeder, and G . Armitage, “A chieving fairness in multiplayer

network games through automated latency balancing,” in Proc. of AC E ,
June 2005.

[27] S. Ross, Introduction to Probability Models. A cademic Press, 2007.
[28] D . K arlis and I. N tzoufras, “Analysis of sports data by using bivariate

Poisson models,” JSTOR Series D (The Statistician), vol. 52, no. 3, 2003.
[29] Z . Bozakov and M . Bredel, “SSH Launcher - A tool for experiment

automation in distributed environments,” T U Darmstadt, Tech. Rep., July
2008.

[30] D . R. Crew, “Slugbot manual,” http://forum.drc.su/ slugbot-manual-
vt704.html, 2004, [Online accessed 2010-05-14].

[31] A . M . Law, Simulation, Modeling and Analysis. McGraw-H ill, 2007.
[32] A . Papoulis and S. U . Pillai, Probability, Random Variables and Stochas-

tic Processes. McGraw-H ill, 2002.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

sc
o
re

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. delay

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 50 100 150 200 250

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

w
in

 p
ro

b
a
b
ili

ty

delay [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. delay

F ig. 6. Statistics of game outcome over network delay. In the considered interval, delay has a linear impact on scoring probabilities and rates. The direction
in which delay occurs has no influence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

sc
o
re

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. jitter

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. jitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

w
in

 p
ro

b
a
b
ili

ty

jitter [ms]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c

Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

Bot 1 - model
Bot 2 - model

(c) win probability vs. jitter

F ig. 7. Jitter has almost no influence on scoring probabilities and rates. However, even minor differences may impact the win probability significantly,
especially for long games.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

sc
o
re

 p
ro

b
a
b
ili

ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(a) probability of scoring vs. loss

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 10 20 30 40 50 60 70

sc
o
ri
n
g
 r

a
te

 [
sc

o
re

/m
in

u
te

]

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex
Bot 2 - c2s
Bot 2 - s2c

(b) mean scoring rate vs. loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

w
in

-p
ro

b
a
b
ili

ty

packet loss [%]

Bot 1 - duplex
Bot 1 - c2s
Bot 1 - s2c
Bot 2 - duplex

Bot 2 - c2s
Bot 2 - s2c
Bot 1 - model
Bot 2 - model

(c) win probability vs. loss

F ig. 8. The impact of loss depends on the direction in which loss occurs. However, loss does not have a measurable impact up to loss probabilities of 0.2.

[18] Y. W. Bernier, “ Latency compensating methods in client/server in-game
protocol design and optimization,” in Proc of G D C , March 2001.

[19] L . Pantel and L . C . Wolf, “ On the impact of delay on real-time
multiplayer games,” in Proc. of N OSSDAV, May 2002.

[20] K .-T. Chen, P. Huang, and C .-L . Lei, “ E ffect of network quality on player
departure behavior in online games,” IE E E Trans. Parallel D istrib. Syst.,
vol. 20, no. 5, 2009.

[21] M . Ries, P. Svoboda, and M . Rupp, “ Empirical study of subjective
quality for massive multiplayer games,” in Proc. of IWSSIP, June 2008.

[22] C . Schaefer, T. Enderes, H . Ritter, and M . Z itterbart, “Subjective quality
assessment for multiplayer real-time games,” in Proc. of NetG ames,
April 2002.

[23] P. Quax, P. Monsieurs, W. Lamotte, D . D . V leeschauwer, and N . De-
grande, “ Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proc. of NetG ames, March 2004.

[24] T. Henderson, “ Latency and user behaviour on a multiplayer game

server,” in Proc of N G C , Nov. 2001.
[25] S. Zander and G . A rmitage, “ Empirically measuring the qos sensitivity

of interactive online game players,” in Proc. of ATNAC , Dec. 2004.
[26] S. Zander, I. Leeder, and G . A rmitage, “A chieving fairness in multiplayer

network games through automated latency balancing,” in Proc. of AC E ,
June 2005.

[27] S. Ross, Introduction to Probability Models. A cademic Press, 2007.
[28] D . K arlis and I. N tzoufras, “Analysis of sports data by using bivariate

Poisson models,” JSTOR Series D (The Statistician), vol. 52, no. 3, 2003.
[29] Z . Bozakov and M . Bredel, “SSH Launcher - A tool for experiment

automation in distributed environments,” T U Darmstadt, Tech. Rep., July
2008.

[30] D . R. Crew, “Slugbot manual,” http://forum.drc.su/ slugbot-manual-
vt704.html, 2004, [Online accessed 2010-05-14].

[31] A . M . Law, Simulation, Modeling and Analysis. McGraw-H ill, 2007.
[32] A . Papoulis and S. U . Pillai, Probability, Random Variables and Stochas-

tic Processes. McGraw-H ill, 2002.

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 29

points to keeping the upstream latency at a minimum. The active queue managers (CoDel, SFQ-CoDel or
PIE) would be the most attractive approaches for ensuring satisfactory user experience for networked FPS
games.

Cloud games are a more recent phenomenon and so have been studied a bit less. [Jarschel], et al.,
performed a subjective study of user-perceived quality of experience for three different types of single-
player cloud-games (a soccer game, a 3rd person role-playing game, and a first person driving game).
They found that downstream packet loss had the greatest impact on user experience with packet loss rates
as low as 0.3% causing a significant degradation in user experience. The fact that downstream packet loss
plays a bigger role in determining user experience in cloud-games is understandable, since downstream
loss will result in distracting visual artifacts that would not be present in console-based networked games.

This study did not examine upstream and downstream packet loss independently with as much detail as
was the case with Bredel & Fidler's study of Quake 3, so it is difficult to draw specific conclusions about
the sensitivity to upstream loss. However, the one test in which upstream packet loss is present and
downstream packet loss is absent was performed with 1% packet loss and 120 ms RTT, and returned an
average MOS of 3.63, as compared to an average MOS (interpolating between test points) of 3.88 for 0%
packet loss and 120 ms RTT. So, the addition of 1% upstream packet loss resulted in an estimated 0.25
decrease in MOS, which would be a noticeable impact.

It is similarly difficult to infer sufficient details on the impact that latency has on cloud-game MOS, but
the data provided seems to show a fairly linear decline in MOS as RTT increases (similar to what was
seen in [Bredel] for Quake 3). This result, and some similar studies, led Choy, et al. [Choy], to suggest
that 80 ms should be the round-trip budget for the network between the client and the server. Based on
this, we suggest that upstream buffering latency be kept below 20 ms for satisfactory cloud-game
performance.

The only queue manager that can achieve both of these stringent latency and loss targets is SFQ-CoDel,
and even then only in moderate to light traffic loads.

4.2 WEB PAGE LOAD TIME

Figure 22 shows a detailed view of the impact that the various queue management techniques can have on
web page load time across the various test conditions. This figure breaks out the test conditions as a 3x3
grid of plots, where the rows represent the different RF congestion levels, and the columns represent the
different traffic load groups.

Figure 23 provides a "one-level-up" summary of the results, where each plot represents a row-wise or
column-wise combination of three of the plots from Figure 22. The first column of plots summarizes the
three different RF congestion levels (weighting each traffic load group equally), whereas the second
column summarizes the three different traffic load groups (weighting each RF traffic level equally).

Finally, Figure 24 provides an overall summary of the results (weighting each of the nine conditions from
Figure 22 equally).

In each of these plots the plot legend indicates the number of page loads that are included in the CDF.
Note that the moderate traffic group consisted of test scenarios where there was always a single web
client, whereas some of the light traffic group scenarios and most of the heavy traffic group scenarios
involved 4 simultaneous web clients. As a result the total number of page loads is lower for the moderate
traffic group.

A
ct

iv
e

Q
ue

ue
 M

an
ag

em
en

t
A
lg

or
it
hm

s
fo

r
D

O
C

S
IS

 3
.0

30

C
a
b
le

La
b

s®

F

ig
u

re
 2

2
 -

 W
e

b
 P

a
g

e
 L

o
a

d
 P

e
rf

o
rm

a
n

c
e

 D
e

ta
il

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 lig
ht

, R
F

Co
ng

es
tio

n
=

no
ne

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=4
74

4)
Bu

ffe
rC

on
tro

l (
N=

12
64

3)
Co

De
l (

N=
13

46
8)

SF
Q
−C

oD
el

 (N
=1

39
06

)
PI

E
(N

=1
35

03
)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
Co

ng
es

tio
n

=
no

ne

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=9
64

)
Bu

ffe
rC

on
tro

l (
N=

34
86

)
Co

De
l (

N=
39

83
)

SF
Q
−C

oD
el

 (N
=4

27
5)

PI
E

(N
=4

09
8)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
Co

ng
es

tio
n

=
no

ne

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=8
09

3)
Bu

ffe
rC

on
tro

l (
N=

16
21

7)
Co

De
l (

N=
17

03
5)

SF
Q
−C

oD
el

 (N
=1

84
68

)
PI

E
(N

=1
83

79
)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 lig
ht

, R
F

Co
ng

es
tio

n
=

lig
ht

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=4
50

1)
Bu

ffe
rC

on
tro

l (
N=

12
42

6)
Co

De
l (

N=
13

32
5)

SF
Q
−C

oD
el

 (N
=1

39
18

)
PI

E
(N

=1
33

95
)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
Co

ng
es

tio
n

=
lig

ht

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=1
09

0)
Bu

ffe
rC

on
tro

l (
N=

34
24

)
Co

De
l (

N=
38

55
)

SF
Q
−C

oD
el

 (N
=4

29
1)

PI
E

(N
=4

11
2)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
Co

ng
es

tio
n

=
lig

ht

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=7
43

1)
Bu

ffe
rC

on
tro

l (
N=

15
80

8)
Co

De
l (

N=
15

58
1)

SF
Q
−C

oD
el

 (N
=1

81
99

)
PI

E
(N

=1
83

59
)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 lig
ht

, R
F

Co
ng

es
tio

n
=

m
od

er
at

e

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=3
63

9)
Bu

ffe
rC

on
tro

l (
N=

11
91

7)
Co

De
l (

N=
13

03
0)

SF
Q
−C

oD
el

 (N
=1

39
18

)
PI

E
(N

=1
33

00
)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 m
od

er
at

e,
 R

F
Co

ng
es

tio
n

=
m

od
er

at
e

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=1
09

3)
Bu

ffe
rC

on
tro

l (
N=

33
47

)
Co

De
l (

N=
37

13
)

SF
Q
−C

oD
el

 (N
=4

24
1)

PI
E

(N
=4

08
6)

1
10

10
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
af

fic
 =

 h
ea

vy
, R

F
Co

ng
es

tio
n

=
m

od
er

at
e

Pa
ge

 L
oa

d
Ti

m
e

(s
ec

on
ds

)

Cumulative Probability

Bu
ffe

rB
lo

at
 (N

=6
54

2)
Bu

ffe
rC

on
tro

l (
N=

15
34

0)
Co

De
l (

N=
15

71
0)

SF
Q
−C

oD
el

 (N
=1

71
97

)
PI

E
(N

=1
83

65
)

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 31

Figure 23 - Web Page Load Performance vs. RF Congestion

and vs. Traff ic Load

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = none

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=13801)
BufferControl (N=32346)
CoDel (N=34486)
SFQ−CoDel (N=36649)
PIE (N=35980)

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = light

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=13022)
BufferControl (N=31658)
CoDel (N=32761)
SFQ−CoDel (N=36408)
PIE (N=35866)

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RF Congestion = moderate

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=11274)
BufferControl (N=30604)
CoDel (N=32453)
SFQ−CoDel (N=35356)
PIE (N=35751)

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = light

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=12884)
BufferControl (N=36986)
CoDel (N=39823)
SFQ−CoDel (N=41742)
PIE (N=40198)

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = moderate

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=3147)
BufferControl (N=10257)
CoDel (N=11551)
SFQ−CoDel (N=12807)
PIE (N=12296)

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Traffic = heavy

Page Load Time (seconds)

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

BufferBloat (N=22066)
BufferControl (N=47365)
CoDel (N=48326)
SFQ−CoDel (N=53864)
PIE (N=55103)

Active Queue Management Algorithms for DOCSIS 3.0

32 CableLabs®

Figure 24 - Web Page Load Performance - Summary

These results show a significant benefit can be achieved by using Buffer Control or any of the active
queue management techniques, and extremely good performance can be expected by using the SFQ-
CoDel or PIE queue managers.

As noted in Section 3.6, our web model does not include DNS lookups. The most interesting impact that
the DNS process would have on these page load time results would come from the potential for packet
loss. An estimate of the impact that would be caused by DNS packet loss can be obtained by examining
the gaming traffic packet loss statistics. Since CoDel in moderate and heavy traffic cases, and SFQ-CoDel
in heavy traffic cases showed the highest levels of gaming packet loss, we would conclude that those
scenarios would see the most negative impact as a result of DNS packet loss.

4.3 VOIP AUDIO QUALITY

Using the methodology described in [White], we estimate voice quality for a G.711 VoIP application in
the simulated conditions. The figures below illustrate the Mean Opinion Score results. Based on the
choice of codec, the ideal MOS score that can be achieved is a value of 4.4. It can be seen that the
BufferBloat case provides very poor VoIP quality across all tested conditions. Buffer Control succeeds in
providing nearly ideal MOS scores in test conditions with no RF congestion, but performance degrades
quickly when RF congestion appears. CoDel provides reasonably good VoIP performance across the

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Web Page Load Time Summary (all conditions)

Page Load Time (seconds)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

BufferBloat (N=38097)
BufferControl (N=94608)
CoDel (N=99700)
SFQ−CoDel (N=108413)
PIE (N=107597)

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 33

entire range of conditions. SFQ-CoDel provides ideal VoIP performance in all of the light and moderate
traffic cases, but performance degrades for the heavy traffic cases, for the reasons noted above. Finally,
the PIE algorithm provided near-perfect MOS scores across all of the tested conditions.

Figure 25 - VoIP Audio Quality - Light Traff ic Scenarios

Figure 26 - VoIP Audio Quality - Moderate Traff ic Scenarios

1.0$

1.5$

2.0$

2.5$

3.0$

3.5$

4.0$

4.5$

5.0$

Bloat$ Buff.Ctrl$ CoDel$ sfqCoDel$ PIE$

no$cong.$

light$cong.$

mod.$cong.$

1.0$

1.5$

2.0$

2.5$

3.0$

3.5$

4.0$

4.5$

5.0$

Bloat$ Buff.Ctrl$ CoDel$ sfqCoDel$ PIE$

no$cong.$

light$cong.$

mod.$cong.$

Active Queue Management Algorithms for DOCSIS 3.0

34 CableLabs®

Figure 27 - VoIP Audio Quality - Heavy Traff ic Scenarios

Figure 28 - VoIP Audio Quality - All Scenarios

$

There are many possible VoIP implementations, and some may show better performance in certain test
conditions than the approach we chose. In particular, some over-the-top VoIP services use deep and
variable dejitter buffers along with sophisticated playback rate modulation techniques in order to

1.0$

1.5$

2.0$

2.5$

3.0$

3.5$

4.0$

4.5$

5.0$

Bloat$ Buff.Ctrl$ CoDel$ sfqCoDel$ PIE$

no$cong.$

light$cong.$

mod.$cong.$

1.0$

1.5$

2.0$

2.5$

3.0$

3.5$

4.0$

4.5$

5.0$

Bloat$ Buff.Ctrl$ CoDel$ sfqCoDel$ PIE$

Vo
IP
%M

O
S%
Sc
or
e%

Light$Traffic$

Moderate$Traffic$

Heavy$Traffic$

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 35

overcome temporary events of high latency. We have not attempted to implement such techniques, nor
are we aware of analytical models that could be used to predict MOS scores for them.

4.4 BULK TCP UPLOAD PERFORMANCE - SHORT TIME SCALE

The last set of application metrics is TCP performance. The figures below show the initial 30 seconds of a
single TCP-Reno upload with no other competing traffic. For all queue managers, the modem starts off
with a full token bucket, so we see the power boost rate of 20 Mbps initially, followed by the 5 Mbps
Max Sustained Rate. The bufferbloat case shows the ideal performance, where TCP ramps up very
quickly to a steady 20 Mbps rate, and then once the token bucket is exhausted, drops down to a steady 5
Mbps. This is one explanation for why the problem of buffer bloat exists today. The advantage of having
an oversized buffer is that TCP performance is maximized, i.e., the presence of a standing queue at the
bottleneck link ensures that the link never goes idle.

The buffer control plot shows the downside to simply limiting the buffer size. While the buffer was
adequately sized for TCP to ramp up fairly quickly to 5 Mbps, it was undersized for reaching 20 Mbps.
As a result, the rate slowly increases and only reaches 20 Mbps after 15 seconds. In situations in which
the power boost configuration is less than 4x the Max Sustained Rate, this effect will not be as
pronounced.

CoDel and SFQ-CoDel show similar performance to one another. They both have a sufficient buffer to
allow TCP to ramp up quickly to 20 Mbps; however, CoDel/SFQ-CoDel induce some packet drops as
they try to react to the rapidly increasing congestion window. The result is that the data rate temporarily
drops to 12 Mbps before beginning to ramp back up to 20 Mbps. Additionally, after the initial power
boost period ends, we do see quite a bit of short-term variability in data rate as they try to maintain a
minimal standing queue. Note that the active queue managers are helped by the fact that the token bucket
rate limiter allows the modem to earn credit during periods where its transmit rate is less than 5 Mbps,
and then spend that credit later to achieve a rate that is greater than 5 Mbps (particularly in the case where
a large token bucket is configured). So, if the AQM happens to send too strong a signal to TCP, forcing it
to momentarily back-off too severely, that doesn't have a big effect on the average throughput over time.

Active Queue Management Algorithms for DOCSIS 3.0

36 CableLabs®

Figure 29 - Short Term TCP Performance

Results with PIE don't show as good performance as compared to the other AQMs. While the data rate
does ramp up quickly to 20 Mbps, PIE induces significant packet drops that cause the data rate to
plummet to as low as 1 Mbps before beginning the Reno linear ramp back up. Unfortunately, it appears
that PIE induces further packet drops when the rate reaches about 12 Mbps, which results in the data rate
never recovering to the full 20 Mbps power boost rate. The data rate then continues to oscillate a bit more
heavily than was the case with CoDel or SFQ-CoDel.

0 10 20 30
0

5

10

15

20

25
Bloat

time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

0 10 20 30
0

5

10

15

20
Buff.Ctrl

time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

0 10 20 30
0

5

10

15

20

25
CoDel

time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

0 10 20 30
0

5

10

15

20

25
sfq−codel

time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 37

Figure 30 - Short Term TCP Performance using PIE

4.5 BULK TCP UPLOAD PERFORMANCE - LONG TIME SCALE

Over a long time scale, we see similar performance for all of the approaches. There is a slight benefit to
using the large buffer (the bufferbloat case), since it is able to keep the link busy consistently. As was
seen in the short term TCP performance graphs in the previous section, the other approaches are not able
to consistently keep the link at maximum capacity. However, the other approaches are benefitted by the
token bucket configuration. If they ever allow the link to go underutilized, the DOCSIS token bucket rate
shaper earns tokens that allow the modem to exceed the Maximum Sustained Rate for an equivalent
amount of data. In other words, the token bucket enforces a long-term average rate limit, and allows for
variability in data rate to achieve it.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25
PIE

time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Active Queue Management Algorithms for DOCSIS 3.0

38 CableLabs®

Figure 31 - Long Term TCP Performance

0.0$

0.5$

1.0$

1.5$

2.0$

2.5$

3.0$

3.5$

4.0$

4.5$

5.0$

Bloat$ Buff.Ctrl$ CoDel$ sfqCoDel$ PIE$

Av
er
ag
e%
TC

P%
Th

ro
ug
hp

ut
%(M

bp
s)
%

Light$Traffic$

Moderate$Traffic$

Heavy$Traffic$

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 39

5 CONCLUSION

In summary, the buffer control feature is available today on many DOCSIS 3.0 modems, but is not
enabled by default. When configured appropriately, buffer control may provide a 10 to 20x reduction in
gaming latency, three to six times reduction Web page load time, improved VoIP quality, and only a
slight degradation in TCP performance (mainly on short time scales).

In looking at the three active queue management approaches that we studied, CoDel provides some
attractive benefits relative to Buffer Control. The main benefits being improvements in gaming latency,
page load time and short term TCP performance, as well as improvements in VoIP performance in certain
conditions.

SFQ-Codel shows extremely good performance in the majority of the tested scenarios, although the issue
with BitTorrent traffic deserves some further research to see if it can be addressed.

The PIE algorithm outperforms buffer control, and in most cases outperforms CoDel. The performance of
PIE for TCP traffic warrants some additional investigation to see if further tuning of PIE can resolve it, or
if performance differs considerably with other TCPs. Another concern is that PIE may require more
elaborate tuning based on the network technology and conditions. One potential improvement in PIE that
has been discussed by Cisco is to marry it with the SFQ concept. While this may give even further
improvements in some scenarios, it would introduce the same issue that SFQ-CoDel has with BitTorrent.

5.1 NEXT STEPS

One next step is for cable operators to plan to enable the use of buffer control in their deployed modems.

Another is for cable modem vendors to examine the implementation feasibility of the various AQM
approaches described here. That these algorithms are more complex than drop tail is certain. But the
improvement in performance likely outweighs the implementation complexity.

In addition, we plan to extend the investigation of AQM techniques to DOCSIS 3.1 speeds, and to the
DOCSIS 3.1 MAC as that starts to take shape. The goal would be to provide some recommendations for
vendors, or potentially some requirements in DOCSIS 3.1 to implement some the advanced flow queuing
concepts. Further, we'd like to understand the benefit that SFQ on its own provides (without CoDel) so
that we can share those results with the community as well.

Finally, this work has only looked at the upstream side, since the view has been that upstream is the
source of the biggest problem. Downstream has been viewed to be not quite as bad, but some of the more
recent data from Netalyzer testing seems to indicate that it is a source for bufferbloat congestion as well.

$

Active Queue Management Algorithms for DOCSIS 3.0

40 CableLabs®

APPENDIX A REFERENCES

[Allman] M. Allman, "Comments on Bufferbloat", ACM SIGCOMM Computer Communication
Review, 43(1), January 2013, http://www.icir.org/mallman/papers/bufferbloat-
ccr13.pdf

[Beigbeder] T, Beigbeder, R, Coughlan, C. Lusher, J. Plunke, E. Agu, M. Claypool, “The Effects of
Loss and Latency on User Performance in Unreal Tournament 2003”, Proceedings of
3rd ACM SIGCOMM Workshop on Network and System Support for Games
(NetGames!04), August, 2004.

[Bredel] M. Bredel and M. Fidler, "A Measurement Study regarding Quality of Service and its
Impact on Multiplayer Online Games", 2010 9th Annual Workshop on Network and
Systems Support for Games (NetGames), 16-17 Nov. 2010.

[Bussiere] J. Bussiere, S. Zander, "Empirical Measurements of Player QoS Sensitivity for the
Xbox Game Halo2", CAIA Technical Report 050527A, May 2005

[Choy] S. Choy, B. Wong, G. Simon, C. Rosenberg, "The Brewing Storm in Cloud Gaming: A
Measurement Study on Cloud to End-User Latency", Network and System Support for
Games (NetGames-2012), November, 2012.

[Dischinger] Dischinger, M., et al., “Characterizing Residential Broadband Networks”, Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement, Oct. 24-26, 2007,
San Diego, CA, USA http://broadband.mpi-sws.org/residential/.

[LEDBAT] Dario Rossi, Claudio Testa, Silvio Valenti, Luca Muscariello, LEDBAT: the new
BitTorrent congestion control protocol, International Conference on Computer
Communications and Networks (ICCCN 2010), Zurich, Switzerland, August, 2010.

[Jarschel] M. Jarschel, D. Schlosser, S. Scheuring, T. Hossfeld, "An Evaluation of QoE in Cloud
Gaming Based on Subjective Tests", 2011 Fifth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, June-July 2011.

[Misra] V. Misra, W.B. Gong, and D. Towsley, “Fluid-based analysis of a network of aqm
routers supporting tcp flows with an application to red,” in Proceedings OF ACM
SIGCOMM, 2000, pp. 151–160.

[Nichols] K. Nichols, V. Jacobsen, "Controlled Delay Active Queue Management", draft-nichols-
tsvwg-codel-01.txt

[Pan] R. Pan, et al., "PIE: A Lightweight Control Scheme To Address the Bufferbloat
Problem", draft-pan-tsvwg-pie-00.txt

[Peon] R. Peon & W. Chan, SPDYEssentials, Google Tech Talk, 12/8/11

[Rossi] D. Rossi, software::LEDBAT, http://perso.telecom-
paristech.fr/~drossi/index.php?n=Software.LEDBAT#howtorun

Active Queue Management Algorithms for DOCSIS 3.0

CableLabs® 41

[Sundaresan] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, A. Pescapè,
"Broadband Internet Performance: A View From the Gateway", SIGCOMM’11,
http://sites.noise.gatech.edu/~srikanth/docs/gateway-sigcomm2011.pdf

[White] G. White, J. Padden, "Preliminary Study of CoDel AQM in a DOCSIS Network",
http://www.cablelabs.com/downloads/pubs/PreliminaryStudyOfCoDelAQM_DOCSIS
Network.pdf

[Zander] S. Zander, G. Armitage "Empirically Measuring the QoS Sensitivity of Interactive
Online Game Players", Australian Telecommunications Networks & Applications
Conference 2004 (ATNAC2004), Sydney, Australia December 8-10 2004.

